Open Access
E3S Web of Conferences
Volume 1, 2013
Proceedings of the 16th International Conference on Heavy Metals in the Environment
Article Number 01006
Number of page(s) 4
Section Remediation I
Published online 23 April 2013
  1. Kirk G. The biogeochemistry of submerged soils. John Wiley & Sons, Ltd: Chichester, 2004; p 282.
  2. Morse JW, Luther GW. ⑀. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 1999; 63:3373–3378. [CrossRef]
  3. Afonso, MD, Stumm, W. Reductive dissolution of Fe(⑀) (hydr)oxides by hydrogen-sulfide. Langmuir 1992; 8:1671–1675. [CrossRef]
  4. Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Carlson AR and Ankley GT. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments. Environ. Sci. Technol. 1992; 26:96–101. [CrossRef]
  5. Reddy KR, DeLaune RD. 2008, Biogeochemistry of wetlands: Science and applications. CRC Press, Boca Raton. [CrossRef]
  6. Morse JW. In Metal Contaminated Aquatic Sediments;Allen HE, Ed.; Ann Arbor Press: Ann Arbor, MI, 1995; Chapter 8:187–199.
  7. Kashem MA, Singh BR. 2001. Metal availability in contaminated soils: II. Uptake of Cd, Ni and Zn in rice plants grown under flooded culture with organic matter addition. Nutrient Cycling in Agroecosystems 61:257–266. [CrossRef]
  8. Fan JL, Hu ZY, Ziadi N, Xia X, Wu CYH. Excessivesulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.). Environmental Pollution 2010; 158:409–415. [CrossRef]
  9. Crowder AA, St.-Cyr L. Iron oxide plaque on wetland roots. Trends Soil Sci. 1991; 1:315–329.
  10. Lai HY, Chen ZS. The influence of 2Na-EDTA application on the interactions of cadmium, zinc, and lead and their uptake of rainbow pink (Dianthus chinensis). J Hazardous Materials 2006; 137:1710–1718. [CrossRef]
  11. Liu HJ, Zhang JL, Zhang FS. Role of iron plaque in Cd uptake by and translocation within rice (Oryza sativa L.) seedlings grown in solution culture. Environmental and Experimental Botany 2007; 59:314–320. [CrossRef]