Open Access
E3S Web of Conferences
Volume 1, 2013
Proceedings of the 16th International Conference on Heavy Metals in the Environment
Article Number 16006
Number of page(s) 4
Section Heavy Metals in Sediments III
Published online 23 April 2013
  1. Carretero MI et al. Mobility of elements in interaction between artficial sweat and peloids used in Spanish spas. Applied clay science 2010; 48: 506–515. [CrossRef]
  2. Gomes C, Silva J. Minerals and clay minerals in medical geology. Applied clay science 2007; 36: 4–21. [CrossRef]
  3. Hakanson L. Ecological risk index of aquatic pollution control. A sedimentological approach. Water research 1980; 14: 975–1001. [CrossRef]
  4. Dolenec T et al. Major, minor and trace elements in surficial sediments from the open Adriatic sea: A regional geochemical study. Geologia Croatica 1998; 51, 1: 59–73.
  5. Karakaya MC et al. Some properties of thermal muds of some spas in Turkey. Applied clay science 2010; 48: 531–537. [CrossRef]
  6. Mascolo N et al. Characterization of toxic elements in clays for human healing use. Applied clay science 1999; 15: 491–500. [CrossRef]
  7. Miko S et al. Influence of land use in small karst watersheds on the chemical status of peloid sediments on the eastern Adriatic coast. Journal of soils and sediments 2007; 7, 5: 303–312. [CrossRef]
  8. Miko S et al. Anthropogenic influence on trace element geochemistry of healing mud (peloid) from Makirina Cove (Croatia). Environmental geology 2008; 55: 517–537. [CrossRef]
  9. Mascolo N et al. In vivo experimental data on the mobility of hazardous chemical elements from clays. Applied clay science 2004; 25: 23–28. [CrossRef]
  10. Mihelčić G et al. Physico-chemical characteristics of the peloid mud from Morinje bay (eastern Adriatic coast, Croatia): suitability for use in balneotherapy. Environmental geochemistry and health 2011; 34:191–198. [PubMed]
  11. Novak R. Peloid. Medicinska enciklopedija 1963; 7: 646–650. (in croatian)
  12. Rebelo M et al. Characterization of Portugese geological materials to be used in medical hydrology. Applied clay science 2011; 51: 258–266. [CrossRef]
  13. Summa V, Tateo F. The use of pelitic raw materials in thermal centres: Mineralogy, geochemistry, grain size and leaching tests. Examples from the Lucania area (southern Italy). Applied clay science 1998; 12: 403–417. [CrossRef]
  14. Šparica M et al. Peloid uvale Makirina (Pirovački zaljev). Elaborat. Zagreb, Institut za geološka istraživanja, OOUR za geologijo 1989; Br. 28/89: 64 str. (in croatian)
  15. Tateo F et al. The in-vitro percutaneous migration of chemical elements from a thermal mud for healing use. Applied clay science 2009; 44: 83–94. [CrossRef]
  16. Tateo F, Summa V. Element mobility in clays for healing use. Applied clay science 2007; 36: 64–76. [CrossRef]
  17. Tomlinson DL et al. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen 1980; 33: 566–575. [CrossRef]
  18. Veniale F et al. Formulation of muds for pelotherapy: effects of “maturation” by different mineral waters. Applied clay science 2004; 25: 135–148. [CrossRef]
  19. Veniale F et al. Thermal muds: Perspectives of innovations. Applied clay science 2007; 36: 141–147. [CrossRef]
  20. Vreča P et al. Evaluation of metal pollution in coastal sediment from Makirina bay in the Central Adriatic. V: Vlahović I (ur.), Biondić R (ur.). 2. hrvatski geološki kongres: Zbornik radova, Cavtat-Dubrovnik, 17.-20.5.2000. Zagreb, Institut za geološka istraživanja; 2000; 475–478.
  21. Vreča P, Dolenec T. Geochemical estimation of copper contamination in the healing mud from Makirina bay, central Adriatic. Environment international 2005; 31: 53–61. [CrossRef] [PubMed]
  22. Vreča P. Isotopic and geochemical properties of the recent sediment from the Makirina bay (central Adriatic). M.Sc. thesis, University of Ljubljana, 116 p. (in slovene).