Open Access
E3S Web of Conferences
Volume 5, 2015
2nd Symposium on OpenFOAM® in Wind Energy
Article Number 02001
Number of page(s) 13
Section Site Assessment and Wind Plant Aerodynamics
Published online 16 October 2015
  1. P.P. Sullivan, J.B. Edson, T. Hristov, J.C. McWilliams. Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. Journal of the Atmospheric Sciences, 65(4), 1225–1245, (2008). [CrossRef]
  2. S. Kalvig, O.T. Gudmestad and N. Winther. Exploring the gap between “best knowledge” and “best practice” within the use of boundary layer meteorology for offshore wind energy, Wind Energ., 17: 161–171. DOI:10.1002/we.157 (2014) [CrossRef]
  3. F. Ocampo-Torres, H. García-Nava, R. Durazo, P. Osuna, G. Díaz Méndez, H. Graber. The INTOA Experiment: A study of ocean-atmospher interactions under moderate to strong offshore winds and opposing swell conditions in the Gulf of Tehuantepec, Mexico. Boundary-Layer Meteorology 2011;
  4. 138(3):433–451. doi:10.1007/s10546-010-9561-5 (2011)
  5. M.J. Churchfield, S. Lee and P. Moriarty. Overview of the simulator for offshore wind farm application (SOWFA) National Renewable Energy Laboratory, Golden, CO, USA 03. May 2012, retrieved January 2014
  6. OpenFOAM; (retrieved 26. June 2014)
  7. S. Kalvig, E. Manger and R. Kverneland. A method for wave driven wind simulations with CFD, Elsevier Energy Procedia, 35, Pages 148–156, ISSN 1876-6102, (2013) [CrossRef]
  8. S. Kalvig, E. Manger, B. Hjertager and J.B. Jakobsen. Wave influenced wind and the effect on offshore wind turbine performance, Energy Procedia, Volume 53, 2014, Pages 202–213, ISSN 1876-6102, (2014). [CrossRef]
  9. S. Kalvig. On wave-wind interactions and implications for offshore wind turbines, University of Stavanger, (PhD thesis UiS, no. 235),, (2014)
  10. J.N. Sørensen and W.Z. Shen. Numerical modeling of wind turbine wakes. J. Fluid Eng. 124 393–399 DOI:10.1115/1.1471361 (2002) [CrossRef]
  11. M.J. Churchfield, S. Lee, J. Michalakes, P.J. Moriarty. A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. Journal of Turbulenc. doi: 10.1080/14685248.2012.668191 (2012)
  12. L.A. Martínez, S. Leonardi, M.J. Churchfield and P.J. Moriarty. A comparison of actuator disc and actuator line wind turbine models and best practices for their use. 50th AIAA Aerospace Sciences Meeting and Exhibit, Nashville, TN, Jan. 9–12, AIAA, Washington D.C., (2012).
  13. N. Troldborg. Actuator line modeling of wind turbine wakes. PhD Thesis, Technical University of Denmark, Lyngby, Denmark (2008)
  14. A.M. Nodeland. Wake modelling using an actuator disk model in openFOAM. Master’s thesis spring 2013, Norwegian University of Science and Technology, Department of Energy and Process Engineering, EPT-M-2013-85, Trondheim, Norway (2013)
  15. J. Jonkman and M. Buhl. FAST User’s Guide, NREL/EL-500-38230, NREL technical report, (2005). Accessible at:
  16. H.K. Veersteg, W.Malalasekera. An Introduction to Computational Fluid Dynamics, Essex, England: Pearson Education Limited, Second edition, (2007)
  17. B.E. Launder, D.B. Spalding. The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, 3 (2), Pages 269–289 DOI:10.1016/0045-7825(74)90029-2 (1974) [CrossRef]
  18. DNV, Design of offshore wind turbine structures, DNV-OS-J101, October (2010)