Open Access
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 01007
Number of page(s) 6
Section Probability of floods and storms
Published online 20 October 2016
  1. Bruun J.T. and Tawn J.A., 1998. Comparison of approaches for estimating the probability of coastal flooding. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47(3): 4
  2. Hawkes P.J., Gouldby B.P., Tawn J.A. and Owen M.W., 2002. The joint probability of waves and water levels in coastal engineering design. Journal of Hydraulic Research, 40(3): 241–251 [CrossRef]
  3. De Michele C., Salvadori G., Passoni G. and Vezzoli R., 2007. A multivariate model of sea storm using copulas, Coast. Eng. 54 (10), Pgs 734–751. [CrossRef]
  4. Salvadori G., Michele C.D., Durante F, 2011 On the return period and design in a multivariate framework Hydrology and Earth System Sciences
  5. Corbella S. and Stretch D., 2013. Simulating a multivariate sea storm using Archimedean copulas, Coastal Engineering, 76, Pg. 68–78, June [CrossRef]
  6. Serinaldi, 2015 Dismissing Return Periods, Stochastic Environmental Research and Risk Assessment, 29(4), pp 1179–1189.. [CrossRef]
  7. Heffernan J. E. and Tawn J. A.,2004. A conditional approach for multivariate extreme values. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 66(3), 497–546 [CrossRef]
  8. Lamb R. et al., 2010. A new method to assess the risk of local and widespread flooding on rivers and coasts. Journal of Flood Risk Management, 3(4): 323–336. [CrossRef]
  9. Wyncoll D. and Gouldby B., 2014 Application of a multivariate extreme value method to flood risk analysis, J. Flood Risk Man. 8(2), 142
  10. Gouldby B, Mendez F, Guanche Y, Rueda A and Minguez R.m 2014 A methodology for deriving extreme nearshore sea conditions for structural design and flood risk analysis, Coast. Eng, 88 [CrossRef]
  11. Booij N., Ris R.C. and Holthuijsen L.H., 1999. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4): 7649–7666. [CrossRef]
  12. O´Hagan A., 2006. Bayesian analysis of computer code outputs: A tutorial. Reliability Engineering & System Safety, 91(11): 1290–1300. [CrossRef]
  13. Camus P., Mendez F.J. and Medina R., 2011a. A hybrid efficient method to downscale wave climate to coastal areas. Coastal Engineering, 58(9): 851–862. [CrossRef]
  14. Camus P., Mendez F.J., Medina R. and Cofiño A.S., 2011b. Analysis of clustering and selection algorithms for the study of multivariate wave climate. Coastal Engineering, 58(6): 453–462. [CrossRef]
  15. Goda Y 2000, Random seas and the Design of Maritime Structures, World Scientific Publishing, ISBN 981-02-3256–X [CrossRef]
  16. Battjes J. A., and Janssen J.P. F.M. 1978 Energy loss and set-up due to breaking of random waves, Proc. 16th International Conference on Coastal Engineering, p. 569–587, Am. Soc .of Civ. Eng., New York
  17. Kingston G., Robinson D., Gouldby B. and Pullen T., 2008. Reliable prediction of wave overtopping volumes using bayesian neural networks. FLOOD risk 2008, Keble College, Oxford, UK.
  18. Van Gent M.R.A., Van den Boogaard H.F.P., Pozueta B. & Medina J.R. 2007. Neural network modelling of wave overtopping at coastal structures. Coastal Engineering 54(8): 586–593. [CrossRef]