Open Access
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 03003
Number of page(s) 8
Section Performance and behaviour of flood defences
Published online 20 October 2016
  1. Kok M., Vrijling J. K. and Zevenbergen C. (2013). Towards an integrated evaluation framework for Multi-Functional Flood Defences. Londen, ISBN: 978-0-415-62144-1: Taylor & Francis Group.
  2. CIRIA. (2013). The International Levee Handbook. London, ISBN 978-0-86017-734-0: CIRIA, Griffin Court.
  3. Wu W. (2011). Earthen Embankment Breaching. J. Hydraul. Eng., vol. 137, no. 12, pp. 1549–1564. [CrossRef]
  4. Bhattarai P. K., Nakagawa H., Kawaike K. and Zhang H. (2015). Study of breach characteristics and scour pattern for overtopping induced river dyke breach. E-roceedings of the 36th IAHR World Congress, pp. 1–11.
  5. Van der Meer J. W., Schrijver R., Hardeman B., Van Hoven A., Verheij H. and Steendam G. J. (2009). Guidance on erosion resistance of inner slopes of dikes from three years of testing with the Wave Overtopping Simulator. Proc. ICE 2009, no. 1994, pp. 1–14, ISBN: 9780727741318.
  6. Hanson G. J., Cook K. R. and Hunt S. L. (2005) Physical modeling of overtopping erosion and breach formation of cohesive embankments. Trans, ASABE, vol. 48, no. 5, pp. 1783–1794, 2005. [CrossRef]
  7. Van Hoven A., Hardeman B., Van der Meer J. W. and Steendam G. J. (2010). Sliding stability of landward slope clay cover layers of sea dikes subject to wave overtopping. Proc. ICCE, p. 12.
  8. Oumeraci H., D’Eliso C. and Kortenhaus A. (2005). Breaching of coastal dikes : state of the art. Braunschweig, LWI Report number: 910.
  9. Zhu Y. (2006). Breach Growth in Clay-Dikes. Technical University Delft, ISBN: 9789090209647.
  10. Steendam G. J., Van Hoven A., Van der Meer J. W. and Hoffmans G. (2014) Wave Overtopping Simulator tests on transitions and obstacles at grass covred slopes of dikes. ASCE, Proc. ICCE 2014. pp. 1–14.
  11. Morris M. (2012). WP 3 : Reliability of Urban Flood Defences - D.3.1 Guidance on improved performance of urban flood defences, Report number: WP3-01-12–11.
  12. Bakker J., Melis R. and Mom R. (2013). Factual Report : Overslagproeven Rivierenland. INFRAM, Project number: 12i071, Version 1.0, Marknesse.
  13. Hoffmans G., Akkerman G. J., Verheij H., Van Hoven A. and Van der Meer J. W. (2008). The erodibility of grassed inner dike slopes against wave overtopping. ASCE, Proc. ICCE 2008, Hamburg., pp. 3224–3236.
  14. COMSOL bv. (2012). Comsol Multiphysics User’s Guide version 4.3. ISBN: 1781273332.
  15. Launder B., Morse A., Rodi W. and Spalding D. (1972). The prediction of free shear flows – A comparison of the performance of six turbulent models. Proceedings of NASA Conference on Free Shear Flows.
  16. Chow V. T. (1959). Open-Channel Hydraulics. New York, ISBN: 07-010776-9: McGraw-Hill Book Company, Inc.
  17. Van Hoven A., Verheij H., Hoffmans G., and Van der Meer J. W. (2013). Evaluation and Model Development: Grass Erosion Test at the Rhine dike, Delft, Project number: 1207811–002.
  18. Hoffmans G. (2012). The influence of Turbulence on Soil Erosion. Delft: Eburon Academic Publishers.
  19. Dean R. G., Rosati J. D., Walton T. L. and Edge B. L. (2010). Erosional equivalences of levees: Steady and intermittent wave overtopping. Ocean Eng., vol. 37, no. 1, pp. 104–113. [CrossRef]
  20. Partheniades E. (1965). Erosion and deposition of cohesive soils. J. Hydraul. Div., vol. 91, no. 1, pp. 105–139.
  21. Valk A. (2009). Wave overtopping impact of water jets on grassed inner slope transitions. TU Delft, retrieved from:
  22. Pan Y., Li L., Amini F. and Kuang C. (2012). Overtopping erosion and failure mechanism of earthen levee strengthened by vegetated HPTRM system. Ocean Eng., vol. 96, pp. 139–148. [CrossRef]
  23. Van der Meer J. W., Hardeman B., Steendam G. J., Schüttrumpf H. and Verheij H. (2010). Flow depths and velocities at crest and landword slope of a dike, in theory and with the wave overtopping simulator. Proc. ICCE 2010.
  24. Sabbagh-Yazdi S. and Jamshidi M. (2012). Depth-Averaged Hydrodynamic Model for Gradual Breaching of Embankment Dams Attributable to Overtopping Considering Suspended Sediment Transport. J. Hydraul. Eng., pp. 580–592.