Open Access
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
Article Number 08004
Number of page(s) 7
Section Vulnerability and societal resilience
Published online 20 October 2016
  1. Barredo, J., Major flood disasters in Europe: 1950–20050. Natural Hazards, 2007. 42(1): p. 125–148. [CrossRef]
  2. Fuchs, S., M. Keiler, and A. Zischg, A spatiotemporal multi-hazard exposure assessment based on property data. Natural Hazards and Earth System Sciences, 2015. 15(9): p. 2127–2142. [CrossRef]
  3. Keiler, M., J. Knight, and S. Harrison, Climate change and geomorphological hazards in the eastern European Alps. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2010. 368: p. 2461–2479. [CrossRef]
  4. Totschnig, R. and S. Fuchs, Mountain torrents: quantifying vulnerability and assessing uncertainties. Engineering Geology, 2013. 155: p. 31–44. [CrossRef] [PubMed]
  5. Tsakiris, G., Flood risk assessment: Concepts, modelling, applications. Natural Hazards and Earth System Sciences, 2014. 14(5): p. 1361–1369. [CrossRef]
  6. Papagiannaki, K., et al., Flash flood occurrence and relation to the rainfall hazard in a highly urbanized area. Nat. Hazards Earth Syst. Sci., 2015. 15(8): p. 1859–1871. [CrossRef]
  7. Gaume, E., et al., A compilation of data on European flash floods. Journal of Hydrology, 2009. 367(1–2): p. 70–78. [CrossRef]
  8. Marchi, L., et al., Characterisation of selected extreme flash floods in Europe and implications for flood risk management. Journal of Hydrology, 2010. 394(1–2): p. 118–133. [CrossRef]
  9. Hong, Y., P. Adhikari, and J.J. Gourley, Flash flood, in Encyclopedia of Nat. Hazards, P.B. (Ed.), Editor 2012, Springer.
  10. Llasat, M., et al., High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Advances in Geosciences, 2010. 23: p. 47–55. [CrossRef]
  11. Gruntfest, E., et al., Dealing with Flash Floods: Contemporary Issues and Future Possibilities, in Coping With Flash Floods 2001, Springer Netherlands. p. 3–10. [CrossRef]
  12. Špitalar, M., et al., Analysis of flash flood parameters and human impacts in the US from 2006 to 2012. Journal of Hydrology, 2014. 519, Part A(0): p. 863–870. [CrossRef]
  13. Koks, E.E., et al., Combining hazard, exposure and social vulnerability to provide lessons for flood risk management. Environmental Science and Policy, 2015. 47: p. 42–52. [CrossRef]
  14. Fuchs, S., J. Birkmann, and T. Glade, Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges. Natural Hazards, 2012. 64(3): p. 1969–1975. [CrossRef]
  15. Meyer, V., et al., Review article: Assessing the costs of natural hazards – state of the art and knowledge gaps. Natural Hazards and Earth System Sciences, 2013. 13(5): p. 1351–1373. [CrossRef]
  16. Rojas, R., L. Feyen, and P. Watkiss, Climate change and river floods in the European Union: Socio-economic consequences and the costs and benefits of adaptation. Global Environmental Change, 2013. 23(6): p. 1737–1751. [CrossRef]
  17. Fuchs, S., Susceptibility versus resilience to mountain hazards in Austria – Paradigms of vulnerability revisited. Natural Hazards and Earth System Sciences, 2009. 9(2): p. 337–352. [CrossRef]
  18. Birkmann, J., ed. Measuring vulnerability to natural hazards. 2006, United Nations University Press: Tokyo. 524.
  19. Field, C.B., et al., eds. Climate Change 2014: Impacts, adaptation, and vulnerability. 2014, Cambridge University Press: Cambridge. 1132.
  20. Fell, R., et al., Guidelines for landslide susceptibility, hazard and risk zoning for landuse planning. Engineering Geology, 2008. 102(3–4): p. 85–98. [CrossRef]
  21. Papathoma-Köhle, M., et al., Improvement of vulnerability curves using data from extreme events: debris flow event in South Tyrol. Natural Hazards, 2012. 64(3): p. 2083–2105. [CrossRef]
  22. Theodoropoulou, H., M. Vamvakari, and R. Mitoula, Community development in the east prefecture of attica, greece, following the 2004 summer olympic games of Athens. International Journal of Sustainable Development and Planning, 2009. 4(2): p. 112. [CrossRef]
  23. Diakakis, M., A method for flood hazard mapping based on basin morphometry: application in two catchments in Greece. Natural Hazards, 2010. 56(3): p. 803–814. [CrossRef]
  24. Lasda, O., A. Dikou, and E. Papapanagiotou, Flash flooding in Attica, Greece: climate change or urbanization? AMBIO: A Journal of the Human Environment, 2010. 39: p. 608–611. [CrossRef]
  25. Papagiannaki, K., K. Lagouvardos, and V. Kotroni, A database of high-impact weather events in Greece: A descriptive impact analysis for the period 2001–2011. Natural Hazards and Earth System Science, 2013. 13(3): p. 727. [CrossRef]
  26. Fuchs, S., K. Heiss, and J. Hübl, Towards an empirical vulnerability function for use in debris flow risk assessment. Natural Hazards and Earth System Sciences, 2007. 7(5): p. 495–506. [CrossRef]
  27. Fuchs, S., C. Kuhlicke, and V. Meyer, Editorial for the special issue: vulnerability to natural hazards – the challenge of integration. Natural Hazards, 2011. 58(2): p. 609–619. [CrossRef]
  28. Totschnig, R., W. Sedlacek, and S. Fuchs, A quantitative vulnerability function for fluvial sediment transport. Natural Hazards, 2011. 58(2): p. 681–703. [CrossRef]
  29. Greek Ministry of Infrastructure, T.a.N., Invoice for the calculation of necessary repair works in buildings affected by natural hazards (earthquake, forest fires, floods, landslides) and the respective housing assistance, O.G.B.I. Greek). Editor 2011.
  30. Solidarity, G.M.f.H.a.S., Specifications for the calculation of the financial support for people affected by natural hazards, O.G.B.I.G. Joint Ministerial Decision 2673/29.8.2001, Editor 2001.
  31. Karagiorgos, K., et al., Integrated flash flood vulnerability assessment: insights from East Attica, Greece. Journal of Hydrology, in press.
  32. O’Keefe, P., K. Westgate, and B. Wisner, Taking the naturalness out of natural disasters. Nature, 1976. 260(5552): p. 566–567. [CrossRef]
  33. Tapsell, S., et al., Vulnerability to flooding: health and social dimensions. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002. 360(1796): p. 1511–1525. [CrossRef]
  34. Cutter, S., B. Boruff, and W. Shirley, Social vulnerability to environmental hazards. Social Science Quarterly, 2003. 84(2): p. 242–261. [CrossRef]
  35. Fekete, A., Validation of a social vulnerability index in context to river-floods in Germany. Natural Hazards and Earth System Sciences, 2009. 9(2): p. 393–403. [CrossRef]
  36. Felsenstein, D. and M. Lichter, Social and economic vulnerability of coastal communities to sea-level rise and extreme flooding. Natural Hazards, 2014. 747(1): p. 463–491. [CrossRef]
  37. Hurlbert, J.S., V.A. Haives, and J.J. Beggs, Core networks and tie activation: what kinds of routine networks allocate resources in nonroutine situations? Am. Sociol. Rev., 2000. 65: p. 598–618. [CrossRef]
  38. Kuhlicke, C., et al., Perspectives on social capacity building for natural hazards: outlining an emerging field of research and practice in Europe. Environmental Science & Policy, 2011. 14(7): p. 804–814. [CrossRef]
  39. Kuhlicke, C., et al., Contextualizing social vulnerability: findings from case studies across Europe. Natural Hazards, 2011. 58(2): p. 789–810. [CrossRef]
  40. Cutter, S.L., Vulnerability to environmental hazards. Progress in Human Geography, 1996. 20(4): p. 529–539. [CrossRef]
  41. Cutter, S.L., The vulnerability of science and the science of vulnerability. Annals of the Association of American Geographers, 2003. 93(1): p. 1–12. [CrossRef]
  42. Apel, H., et al., Flood risk analyses – How detailed do we need to be? . Natural Hazards, 2009. 49(1): p. 79–98. [CrossRef]
  43. Kreibich, H., et al., Is flow velocity a significant parameter in flood damage modelling? Natural Hazards and Earth System Sciences, 2009. 9(5): p. 1679–1692. [CrossRef]
  44. Fuchs, S., M. Holub, and J. Suda, Reducing physical vulnerability to mountain hazards by local structural protection, in Internationales Symposion Interpraevent, G. Koboltschng, J. Hübl, and J. Braun, Editors. 2012, Internationale Forschungsgesellschaft Interpraevent: enoble. p. 675–686.
  45. Highfield, W.E., S.A. Norman, and S.D. Brody, Examinating the 100-year floodplain as a metric of risk, loss, and household adjustment. Risk Analysis, 2013. 33(2): p. 186–191. [CrossRef]
  46. Kreibich, H., et al., Development of FLEMOcs – a new model for the estimation of flood losses in the commercial sector. Hydrological Sciences Journal, 2010. 55(8): p. 1302–1314. [CrossRef]
  47. Papathoma-Köhle, M., et al., Loss estimation for landslides in mountain areas - An integrated toolbox for vulnerability assessment and damage documentation. Environmental Modelling and Software, 2015. 63: p. 156–169. [CrossRef]
  48. Sapountzaki, K., et al., Disconnected policies and actors and the missing role of spatial planning throughout the risk management cycle. Natural Hazards, 2011. 59(3): p. 1445–1474. [CrossRef]
  49. Terti, G., et al., Dynamic vulnerability factors for impact-based flash flood prediction. Natural Hazards, 2015.
  50. Karagiorgos, K., et al Multi-vulnerability analysis for flash flood risk management. Natural Hazards, 2016. 82(1): p. 63–87 [CrossRef]