Open Access
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
Article Number 02002
Number of page(s) 5
Section Keynote Lectures
Published online 12 September 2016
  1. M. Tuller, D. Or, Retention of water in soil and the soil water characteristic curve. Encyclopedia of Soils in the Environment, 4, 278–289 (2004).
  2. D. B. Jaynes, Comparison of soil-water hysteresis models. Journal of Hydrology, 75(1), 287–299 (1984).
  3. S. J. Wheeler, R. S. Sharma, M. S. R. Buisson, Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils. Géotechnique, 53(1), 41–54 (2003).
  4. R. Tamagnini, An extended Cam-clay model for unsaturated soils with hydraulic hysteresis. Géotechnique, 54(3), 223–228 (2004).
  5. A. Khosravi, J.S. McCartney, Impact of hydraulic hysteresis on the small-strain shear modulus of low plasticity soils. Journal of Geotechnical and Geoenvironmental Engineering, 138(11), 1326–1333 (2012).
  6. C. Yang, D. Sheng, J.P. Carter, Effect of hydraulic hysteresis on seepage analysis for unsaturated soils. Computers and Geotechnics, 41, 36–56. ISO 690, (2012).
  7. E. Nikooee, G. Habibagahi, S.M Hassanizadeh, A. Ghahramani, Effective stress in unsaturated soils: A thermodynamic approach based on the interfacial energy and hydromechanical coupling. Transport in porous media,96 (2), 369–396 (2013). [CrossRef]
  8. N. K. Karadimitriou, Two-phase flow experimental studies in micro-models, PhD Dissertation, Depart of Earth Sciences, Utrecht University, 145 (2013).
  9. S.M. Hassanizadeh, W.G. Gray, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Advances in water resources, 13(4), 169–186 (1990). [CrossRef]
  10. W. G. Gray, S.M. Hassanizadeh, Thermodynamic basis of capillary pressure in porous media. Water Resources Research, 29(10), 3389–3405 (1993). [CrossRef]
  11. H. Kim, P.S.C. Rao, M. D. Annable, Gaseous tracer technique for estimating air–water interfacial areas and interface mobility. Soil Science Society of America Journal, 63(6), 1554–1560 (1999). [CrossRef]
  12. M. L. Brusseau, S. Peng, G. Schnaar, A. Murao, Measuring air-water interfacial areas with X-ray microtomography and interfacial partitioning tracer tests. Environmental science & technology, 41(6), 1956–1961 (2007). [CrossRef] [PubMed]
  13. M. L. Porter, M. G. Schaap, D. Wildenschild, Lattice-Boltzmann simulations of the capillary pressure–saturation–interfacial area relationship for porous media. Advances in Water Resources, 32(11), 1632–1640 (2009). [CrossRef]
  14. S. A. Galindo-Torres, A. Scheuermann, L. Li, Boundary effects on the Soil Water Characteristic Curves obtained from lattice Boltzmann simulations. Computers and Geotechnics, 71, 136–146 (2016). [CrossRef]
  15. R. Sivanesapillai, N. Falkner, A. Hartmaier, H. Steeb. A CSF-SPH method for simulating drainage and imbibition at pore-scale resolution while tracking interfacial areas. Advances in Water Resources (2015). [PubMed]
  16. V. Joekar-Niasar, S. M. Hassanizadeh. Pore-network modeling of wicking: a two-phase flow approach. Wicking in Porous Materials: Traditional and Modern Modeling Approaches, 237–262 (2012). [CrossRef]
  17. V. Šmilauer, Cohesive particle model using the discrete element method on the yade platform (Doctoral dissertation, Université de Grenoble; and Czech Technical University in Prague (2010).
  18. K.A. Culligan, D. Wildenschild, B. Christensen, W. G. Gray, M.L. Rivers, A. F. Tompson, Interfacial area measurements for unsaturated flow through a porous medium. Water Resources Research, 40(12) (2004). [CrossRef]
  19. Y. C. Chung, J. Y. Ooi, A study of influence of gravity on bulk behaviour of particulate solid. Particuology, 6(6), 467–474 (2008). [CrossRef]
  20. H. Dong, Micro-CT imaging and pore network extraction (Doctoral dissertation, Department of Earth Science and Engineering, Imperial College London) (2008).
  21. B. Chareyre, A. Cortis, E. Catalano, E. Barthélemy, Pore-scale modeling of viscous flow and induced forces in dense sphere packings. Transport in porous media, 94(2), 595–615 (2012). [CrossRef]
  22. T. Sweijen, E. Nikooee, S. Majid Hassanizadeh, B. Chareyre, The effects of swelling and porosity change on capillarity: DEM coupled with a pore-unit assembly method, Transport in Porous Media (in press).
  23. C. Yuan, B. Chareyre, F. Darve, Pore-scale simulations of drainage in granular materials: finite size effects and the representative elementary volume. Advances in Water Resources (2015), doi: 10.1016/j.advwatres.2015.11.018. [PubMed]
  24. M. Prodanovic, S.L. Bryant. A level set method for determining critical curvatures for drainage and imbibition. J Colloid Interface Sc., 304(2), 442–58 (2006). [CrossRef]
  25. R.P. Mayer, R.A. Stowe. Mercury porosimetry breakthrough pressure for penetration between packed spheres. J Colloid Sci. 20(8), 893–911 (1965). [CrossRef]
  26. H. M. Princen, Capillary phenomena in assemblies of parallel cylinders: I. Capillary rise between two cylinders. J Colloid Interface Science, 30(1), 69–75 (1969). [CrossRef]
  27. G. R. Jerauld, S.J. Salter, The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modeling. Transport in Porous Media, 5(2), 103–151 (1990). [CrossRef]
  28. A. MacKay, To find the largest sphere which can be inscribed between four others. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 29(3), 308–309 (1973). [CrossRef]
  29. D. Michelucci, S. Foufou, Using cayley-menger determinants for geometric constraint solving. Paper presented at the Proceedings of the Ninth ACM Symposium on Solid Modeling and Applications, 285–290 (2004).