Open Access
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
Article Number 04003
Number of page(s) 8
Section Invited Lectures
Published online 12 September 2016
  1. MS Diederichs. Rock Fracture and Collapse Under Low Confinement Conditions. Rock Mech Rock Eng 36(5):339–81 (2003). [CrossRef]
  2. CF Tsang, F Bernier, C. Davies. Geohydromechanical processes in the Excavation Damaged Zone in crystalline rock, rock salt, and indurated and plastic clays - in the context of radioactive waste disposal. Int J Rock Mech Min Sci 42(1):109–25 (2005). [CrossRef]
  3. Andra. Dossier 2005 Argile. Synthesis: Evaluation of the feasibility of a geological repository in an argillaceous formation, Meuse/Haute Marne site. Tech. Rep.; Paris, France; (2005).
  4. R Plassart, R Fernandes, A Giraud, D Hoxha, F Laigle. Hydromechanical modelling of an excavation in an underground research laboratory with an elastoviscoplastic behaviour law and regularization by second gradient of dilation. Int J Rock Mech Min Sci 58:23–33 (2013).
  5. Y Jia, HB Bian, G Duveau, K Su, JF Shao. Hydromechanical modelling of shaft excavation in Meuse/Haute-Marne laboratory. Phys Chem Earth 33:S422–35 (2008). [CrossRef]
  6. S Levasseur, F Collin, R Charlier, D Kondo. A micro-macro approach of permeability evolution in rocks excavation damaged zones. Comput Geotech 49:245–52 (2013). [CrossRef]
  7. R Charlier, F Collin, B Pardoen, J Talandier, JP Radu, P Gerard. An unsaturated hydro-mechanical modelling of two in-situ experiments in Callovo-Oxfordian argillite. Eng Geol 165:46–63 (2013). [CrossRef]
  8. B Pardoen, S Levasseur, F Collin. Using Local Second Gradient Model and Shear Strain Localisation to Model the Excavation Damaged Zone in Unsaturated Claystone. Rock Mech Rock Eng 48(2):691–714. doi: 10.1007/s00603-014-0580-2 (2015). [CrossRef]
  9. F Collin, XL Li, JP Radu, R Charlier. Thermo-hydro-mechanical coupling in clay barriers. Engineering Geology 64:179–193 (2002). [CrossRef]
  10. B. Pardoen, J. Talandier, F. Collin. Permeability evolution and water transfer in the excavation damaged zone of a ventilated gallery. Int. J. Rock Mech. Min. Sci., under review (2016)
  11. P Gerard, R Charlier, R Chambon, F Collin. Influence of evaporation and seepage on the convergence of a ventilated cavity. Water Resour Res 44(5):1–16 (2008). [CrossRef]
  12. TA Ghezzehei, RC Trautz, S Finsterle, PJ Cook, CF Ahlers. Modeling coupled evaporation and seepage in ventilated cavities. Vadose Zone J 3(3):806–18 (2004). [CrossRef]
  13. G. Armand, A. Noiret, J. Zghondi, D.M. Seyedi. Short- and long-term behaviors of drifts in the Callovo-Oxfordian claystone at the Meuse/Haute-Marne Underground Research Laboratory. Journal of Rock Mechanics and Geotechnical Engineering Volume 5, Issue 3, June 2013, Pages 221–230 [CrossRef]
  14. J Desrues. Hydro-mechanical coupling and strain localization in saturated porous media. Rev Eur Génie Civ 9(5–6):619–34 (2005).
  15. R Chambon, D Caillerie, NE Hassan. One-dimensional localisation studied with a second grade model. Eur J Mech A-Solid 17(4):637–56 (1998). [CrossRef]
  16. F Collin, R Chambon, R Charlier. A finite element method for poro mechanical modelling of geotechnical problems using local second gradient models. Int J Numer Meth Engng 65(11):1749–72 (2006). [CrossRef]
  17. E Cosserat, F Cosserat. Théorie des Corps Déformables. Paris: Hermann (1909).
  18. RD Mindlin. Second gradient of strain and surface-tension in linear elasticity. Int J Solids Struct 1:417–38 (1965). [CrossRef]
  19. P Germain. The method of virtual power in continuum mechanics. Part 2 Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973). [CrossRef]
  20. RW Lewis, BA. Schrefler The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley: New York (2000)
  21. MA Biot. General theory for three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941). [CrossRef]
  22. B. Pardoen, D.M. Seyedi, F. Collin Shear banding modelling in cross-anisotropic rocks International Journal of Solids and Structures 72:63–87 (2015) [CrossRef]
  23. J Graham, GT Houlsby. Anisotropic elasticity of a natural clay. Géotechnique 33:165–180 (1983). [CrossRef]
  24. AEH Love. A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press (1927).
  25. B Amadei. Rock anisotropy and the theory of stress measurements. Lecture Notes in Engineering Series, vol. 2. Springer-Verlag, New York (1983). [CrossRef]
  26. AHD Cheng. Material coefficients of anisotropic poroelasticity. Int. J. Rock Mech. Min. Sci. 34:199–205 (1997) [CrossRef]
  27. G Duveau, JF Shao, JP Henry. Assessment of some failure criteria for strongly anisotropic materials. Mech. Cohes-Frict Mat. 3:1–26 (1998). [CrossRef]
  28. S Pietruszczak, Z Mroz. On failure criteria for anisotropic cohesive-frictional materials. Int. J. Numer. Anal. Methods Geomech. 25:509–524 (2001). [CrossRef]
  29. S Pietruszczak, D Lydzba, JF Shao. Modelling of inherent anisotropy in sedimentary rocks. Int. J. Solids Struct. 39:637–648 (2002) [CrossRef]
  30. M Panet, A Guenot. Analysis of convergence behind the face of a tunnel. In: Proceedings of the 3rd International Symposium : Tunnelling 82. Brighton: 1065 Institution of Mining and Metallurgy; 197–204 (1982).