Open Access
E3S Web Conf.
Volume 9, 2016
3rd European Conference on Unsaturated Soils – “E-UNSAT 2016”
Article Number 16001
Number of page(s) 6
Section Water Transport Properties
Published online 12 September 2016
  1. Brandt, A., Breslker, E., Diner, N., Ben-Asher, J., Heller, J. and Goldberg, D. 1971. Infiltration from a trickle source: I. Mathematical models. Soil Science Society of American Journal. 35: 683–689. [CrossRef]
  2. Taghavi, S.A., Marino Miguel, A. and Rolston, D.E. 1984. Infiltration from trickle-irrigation source. Journal of Irrigation and Drainage Engineering-ASCE. 10: 331–341. [CrossRef]
  3. Ben-Asher, J. 1986. Infiltration and water extraction from trickle irrigation source: the effective hemisphere model. Soil Science Society of American Journal. 50 (4): 882–887. [CrossRef]
  4. Schwartzman, M. and Zur, B. 1986. Emitter spacing and geometry of wetted soil volume. Journal of Irrigation and Drainage Engineering. 112(3): 242–253. [CrossRef]
  5. Amin, M.S.M., Ekhmaj, A.I.M. 2006. DIPAC-drip irrigation water distribution pattern calculator. 7th International micro irrigation congress. September 10–16, Kuala Lumpur, Malaysia.
  6. Rajaram, H., Ferrand, L.A. and Celia, M.A. 1997. Prediction of relative permeabilities for unconsolidated soils using pore-scale network models. Water Resources Research. 33: 43–52. [CrossRef]
  7. Fischer, U. and Celia, M.A. 1999. Prediction of relative and absolute permeabilities for gas and water from soil water retention curves using a pore-scale network model. Water Resources Research. 35: 1089–1100. [CrossRef]
  8. Reeves, P.C. and Celia, M.A. 1996. A functional relationship between capillary pressure, saturation, and interfacial area as revealed by a pore-scale network model. Water Resources Research. 32: 2345–2358. [CrossRef]
  9. Joekar-Niasar, V., Hassanizadeh, S.M., Pyrak-Nolte, L. and Berentsen, C. 2009. Simulating drainage and imbibition experiments in a high-porosity micro-model using an unstructured pore-network model. Water Resources Research. 45 (2): 1–15. [CrossRef]
  10. Joekar-Niasar, V., Prodanovic, M., Wildenschild, D. and Hassanizadeh, S.M. 2010a. Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media. Water Resources Research. 46: 1–18. [CrossRef]
  11. Joekar-Niasar, V., Hassanizadeh, S.M. and Dahle, H.K. 2010b. Non-equilibrium effects in capillarity and interfacial area in two-phase flow: Dynamic pore-network modeling. Journal of Fluid Mechanics. 665: 38–71. [CrossRef]
  12. Hilfer, R. and Manwart, C. 2001. Permeability and conductivity for reconstruction models of porous media. Physical Review E. 64(021304): 1–4. [CrossRef]
  13. Joekar-Niasar, V. and Hassanizadeh, S.M. 2011. Effect of fluids properties on non-equilibrium capillarity effects: Dynamic pore-network modeling. International Journal of Multiphase Flow. 37(2): 198–214. [CrossRef]
  14. Ryazanov, A.V., Van Dijke, M.I.J. and Sorbie, K.S. 2009. Two-phase pore-network modelling: existence of oil layers during water invasion. Transport in Porous Media. 80(1): 79–99. [CrossRef]
  15. Richards, L.A. 1931. Capillary conduction of liquids in porous mediums. Physics. 1: 318–333. [CrossRef]
  16. Bear, J. 1988. Dynamics of Fluids in Porous Media, Dover Publications, New York.
  17. Besharat, S., Nazemi, A.H. and Sadraddini, A.A. 2010. Parametric modeling of root length density and root water uptake in unsaturated soil. Turkish Journal of Agriculture and Forestry. 34, 439–449.
  18. Vauclin, M., Haverkamp, R. and Vauchaud, G. 1989. Résolution de l’équation de l’infiltration de l’eau dans le sol : approches analytiques et numériques. Presses Universitaires de Grenoble, Grenoble, 183 pp.
  19. Shan, Y. and Wang, Q. 2012. Simulation of salinity distribution in the overlap zone with double-point-source drip irrigation using HYDRUS-3D. Australian Journal of Crop Science. 6(2), 238–247.