
Uncertainty Model for Total Solar Irradiance 
 Estimation on Australian Rooftops 

Hassan Al-Saadi, Rastko Zivanovic & Said Al-Sarawi 

School of Electrical and Electronic Engineering, The University of Adelaide 

Adelaide SA 5000, Australia. 

hassan.al-saadi, rastko.zivanovic, said.alsarawi}@adelaide.edu.au

Abstract.

The installations of solar panels on Australian rooftops have been in rise for the last few years, 
especially in the urban areas. This motivates academic researchers, distribution network 
operators and engineers to accurately address the level of uncertainty resulting from grid-
connected solar panels. The main source of uncertainty is the intermittent nature of radiation, 
therefore, this paper presents a new model to estimate the total radiation incident on a tilted 
solar panel. Where a probability distribution factorizes clearness index, the model is driven 
upon clearness index with special attention being paid for Australia with the utilization of best-
fit-correlation for diffuse fraction. The assessment of the model validity is achieved with the 
adoption of four goodness-of-fit techniques. In addition, the Quasi Monte Carlo and sparse grid 
methods are used as sampling and uncertainty computation tools, respectively. High resolution 
data resolution of solar irradiations for Adelaide city were used for this assessment, with an 
outcome indicating a satisfactory agreement between actual data variation and model.   

Keywords- Solar irradiation prediction, tilted surface, goodness of fit, diffuse fraction 
correlation.

Introduction 
The current prevalence of solar rooftops in Australia incentivizes academic 
researchers, engineers and power network operators to investigate in detail solar 
engineering applications. As part of this tendency, solar irradiance prediction has 
been given a tremendous interest and revealed different approaches and methods. 
The importance of such studies lies in the fact that, to date, a small portion of 
Photovoltaic (PV) rooftops are equipped with real-time communication, 
measurement and control devices, resulting in increased cost [1]. Nonetheless, the 
majority of PV installations are not observable and controllable. While the 
availability of PV measurement and control devices is subject to high costs, it is 
difficult to collect the required specification information from each unit. 
Meanwhile, solar energy reaching the ground can be predicted with high accuracy 
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by the utilization of statistical estimation functions at a given time for a predefined 
location, as discussed hereinafter. Therefore, obtaining a prior accurate 
knowledge on solar radiation can help in improving the quality of feed-in energy, 
reducing the ancillary costs of weather forecast equipment, mitigating the 
negative impacts of high PV penetration, especially in residential areas, storage 
quantifying and a better integration of PVs into the so-called “smart grid”.   

Figure 1 Measured data of one day in January 2016, compared with calculations 
of expected values of probabilistic irradiation model in hourly evaluations. 
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The major step to overcome the adversity of uncertainty level is the use of several 
irradiance representation models in which strengths and weaknesses of each model 
can be examined as well as their complexity. In this paper, a new model for 
uncertainty prediction of solar irradiation incident on a tilted surface is presented. 
Where such model is yet to be satisfactorily modelled, this model is built upon a 
given characterization of clearness index and diffuse fraction of radiation while 
taking into consideration the Australian climate conditions. Since the index and the 
fraction are proven to have a functional relationship [2], the properties of clearness 
index can dictate the level of uncertainty in the total incident radiation. In this regard, 
the probabilistic evaluation of uncertainty, given probability density function (PDF) 
similar to the one given in [3], can specify the amount of the ground-reaching 
radiation.  
The contribution of this work is to provide a simple and easy to use model that can 
be incorporated or adapted into other models to stimulate interdisciplinary research 
and system engineering applications. The uncertainty modelling of irradiation is 
presented in the following section with the emphasis on total irradiation estimation 
with the embedment of solar variation. In Section 3, four different statistical tools, 
namely root mean square error (RMSE), mean bias error (MBE), Kolmogorov-
Smirnov test (KST) and correlation coefficient (𝑅𝑅2) are used as part of this model 
assessment. Then, the implementation of the presented model is carried out and 
assessed with high resolution solar radiation data for two different seasonal days at 
several day times in Adelaide are discussed in Section 4. The last section presents a 
summary of this research outcomes. 

Irradiation Uncertainty Modelling 
Total Irradiation 

The total radiation incident on a tilted surface, 𝐼𝐼𝑇𝑇, with the assumption of 
anisotropic sky, can be rewritten as: 

𝐼𝐼𝑇𝑇 = 𝑘𝑘𝑡𝑡
𝐼𝐼𝑔𝑔

 . [(𝐼𝐼𝑏𝑏𝐼𝐼𝑜𝑜 + 𝐼𝐼𝑑𝑑  𝐼𝐼𝑏𝑏) 𝑅𝑅𝑏𝑏 + 𝐼𝐼𝑑𝑑(𝐼𝐼𝑜𝑜 − 𝐼𝐼𝑏𝑏) (1+cos 𝛽𝛽
2 ) [1 + √𝐼𝐼𝑏𝑏

𝐼𝐼𝑔𝑔 sin3 𝛽𝛽
2  ]] + 𝐼𝐼𝑔𝑔  𝜌𝜌 (1−cos 𝛽𝛽

2 ). (1) 

In this model, circumsolar diffuse, horizon brightening as well as anisotropy factor 
are incorporated into the isotropic model resulting in the so called “HDKR” model, 
named after the initials of Hay, Davies, Klucher and Reindl researchers [4]. The 𝐼𝐼𝑜𝑜,
𝐼𝐼𝑔𝑔, 𝐼𝐼𝑏𝑏 and 𝐼𝐼𝑑𝑑 are the exterritorial, global, beam and diffuse irradiances, respectively; 
 𝑅𝑅𝑏𝑏 is Ratio of beam radiation on tilted surface to that on horizontal surface. The tilt 
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angle is denoted by 𝛽𝛽 and the reflectance ground factor is 𝜌𝜌. 𝑘𝑘𝑡𝑡 is the hourly clearness 
index.

Solar Variation 
For the variations of solar radiation, two vital factors have been identified to be 
representing the clearness of the sky: clearness index, 𝑘𝑘𝑡𝑡, and diffuse fraction, 𝑘𝑘𝑑𝑑.
These quantities are highly correlated with different functions established on the 
subject, such as piecewise linear [2], piecewise 4th-order polynomial [5], piecewise 
3rd-order polynomial [6], piecewise 2nd-order polynomial [7], logistic [8]. The 
logistic function is proven to be the best-fit based on Australian meteorological 
conditions. Later, the logistic function is further complicated adding more sensitive 
factors, for example, the effects of apparent solar time, persistence of global 
radiation level and daily clearness index. Providing the value of 𝑘𝑘𝑡𝑡, the 𝑘𝑘𝑑𝑑 can be 
computed using the logistic function as: 

𝑘𝑘𝑑𝑑 = 1
1+𝑒𝑒−𝐵𝐵𝐵𝐵𝐵𝐵−𝐵𝐵𝑡𝑡),  (2) 

where 𝐵𝐵 and 𝐵𝐵𝐵 are specified parameters for the logistic based diffuse fraction that 
can be computed as demonstrated in [8]. 

The behavior of 𝑘𝑘𝑡𝑡 is assumed to follow a special distribution with various 
approaches are proposed given the characteristics of the place, such as time standard 
meridian, number of the days in a year, longitude, latitude, altitude, and ground 
reflectance, further details can be found in [9]. In this paper, we choose to utilize the 
single Gamma distribution proposed by Holland and Huget [3] where the probability 
density is characterized by time and locations.   

Uncertainty Model
As the discussed hereinbefore, it is possible to form an uncertainty model when the 
uncertainty behavior of 𝑘𝑘𝑡𝑡 is known. Therefore, after rewritten (1) to be a function of 
𝑘𝑘𝑡𝑡 and 𝑘𝑘𝑑𝑑, the hourly total irradiation on a surface with tilt angle, 𝛽𝛽, can be expressed 
as:

𝐼𝐼𝑇𝑇 = [ 𝑅𝑅𝑏𝑏𝐵𝑛𝑛𝑛 𝑛𝑛) 𝑛 𝑘𝑘𝑑𝑑[−𝑅𝑅𝑏𝑏𝐵𝑛𝑛𝑛 𝑛𝑛) 𝑛 𝑘𝑘𝑡𝑡𝑅𝑅𝑏𝑏𝐵𝑛𝑛𝑛 𝑛𝑛) − 𝑘𝑘𝑑𝑑𝑘𝑘𝑡𝑡𝑅𝑅𝑏𝑏𝐵𝑛𝑛𝑛 𝑛𝑛) 𝑛  𝑐𝑐𝐵𝑘𝑘𝑑𝑑) − 𝑘𝑘𝑡𝑡𝑐𝑐𝐵𝑘𝑘𝑑𝑑) 𝑛

𝑘𝑘𝑑𝑑𝑘𝑘𝑡𝑡𝑐𝑐𝐵𝑘𝑘𝑑𝑑)] 𝑛 𝜌𝜌 (1−𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐2 )] × 𝐻𝐻𝑐𝑐𝐵𝑛𝑛) × 𝑛𝑛𝑑𝑑𝐵𝑛𝑛𝑛 𝑛𝑛), (3) 

where  
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𝑐𝑐(𝑘𝑘𝑑𝑑) = (1+𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐
2 ) [1 + √1 − 𝑘𝑘𝑑𝑑 𝑠𝑠𝑠𝑠𝑠𝑠3 𝑐𝑐

2  ]. 

The predefined quantities that function of 𝑠𝑠, which is the number of days, and 𝑡𝑡, day 
time, are shown with two brackets next to them while the uncertain quantity, 𝑘𝑘𝑡𝑡, is 
just indexed by 𝑡𝑡. In addition, the values of 𝐻𝐻𝑐𝑐 are just indexed by 𝑠𝑠 (cf. [4] & [3] for 
extra information).  

For the initial assessment of the model’s results, Figure 1 shows the hourly-
calculated total irradiations (kW/m2) for different tilt angles in a day for the city of 
Adelaide in comparison with the measured (one-minute) solar exposure data taken 
from the data portal webpage [10]. Herein, we utilize the Sparse Grid Technique 
[11] for the computations of the hourly expectation of 𝐼𝐼𝑇𝑇. 0 to 1 is the chosen domain 
for 𝑘𝑘𝑡𝑡 as it is conventionally assumed. This is as the 𝑘𝑘𝑡𝑡 is the ratio of terrestrial to 
extraterrestrial radiation idealy this should have a maximum value of 1, however if 
more influential factors are included such as the edges of the clouds the ratio could 
reach to 1.4 [9]. Regarding the figure and although the objectivity of assessing the 
model graphically is doubtable, a preliminary indication of the effectiveness of the 
present model can be drawn from these expectations.

Model’s Assessment
The quality assessment of the modeled data is performed using goodness-of-fit 
techniques such as Root Mean Square Error (RMSE), Mean Bias Error (MBE), 
Coefficient of determination R2 and Kolmogorov-Smirnov (KS) as in the following
subsections. The usefulness of these metrics is to test the linear relationship between 
modelled and measured data. 

Root mean square error 
RMSE delivers a positive value with a tendency towards zero for ideal models. In 

the assessment of uncertainty models, the normalized version of RMSE with respect 
to predicted values is, herein, employed, as defined in [12] with objective 
justifications explained. Then, the short-term performance is evaluated as a smaller 
value means a better performance. The RMES value can be obtained using: 

 RMSE = √1
n ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖𝑖1 . (4) 

where 𝑌𝑌 represents a set of data with the subscripts “𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.” and “𝑚𝑚𝑚𝑚𝑐𝑐𝑠𝑠.” represent 
calculated values from the model and measured values taken from meteorological 
stations. The subscript 𝑠𝑠 denotes the 𝑠𝑠-th value of an hourly solar irradiation; 𝑠𝑠 is the 
number of the hours from different days in a month across involved years.  
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Mean bias error 
The mean bias error (MBE) gives an indication of the average bias of the model. 
The value of MBE could be negative indicating the underestimation of tested 
model, as the desirable values are the low positive ones. Despite the popularity of 
this test, it is intuitively obvious that an overestimation may cancel an 
underestimation for individual observations, which is a well-recognized limitation 
of the MBS. According to [13], the formula of MBE with the normalization in 
respect to the calculated data can be expressed as: 

 MBE = 1𝑛𝑛 ∑
𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.−𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. 

𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.
𝑛𝑛
𝑖𝑖𝑖1 , (5) 

The descriptions of the subscripts 𝑖𝑖, 𝑛𝑛, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. and 𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚. are mentioned in the previous 
subsection. 

Kolmogorov-Smirnov test 
The Kolmogorov-Smirnov test (KST) involves the use of cumulative density 
functions (CDF), 𝐹𝐹, of both model and empirical data where the large difference is 
computed as follows:  

 KST = sup
1≤𝑖𝑖≤𝑛𝑛

|𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. − 𝐹𝐹𝑖𝑖𝑖 𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐.|, (6) 
In (6), 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. represents the CDF of empirical probability during 𝑖𝑖-th observation 
while 𝐹𝐹𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐. stands for the CDF of thereortical model probability at 𝑖𝑖-th sample. The 
smallest value of KST indicates the goodness of fit of the proposed model. 

The correlation coefficient (𝑹𝑹𝟐𝟐)
The correlation coefficient, 𝑅𝑅2, is the determination of linear relations between 
calculated and measured observations. In this test, the variance of errors to the 
variance of the calculated data is compared, examining the quality of the model. It 
can be computed as follows: 

𝑅𝑅2 = 1 − ∑ (𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. −𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.)
2𝑛𝑛

𝑖𝑖𝑖𝑖
∑ (𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. −�̅�𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖.)

2𝑛𝑛
𝑖𝑖𝑖𝑖

, (7) 
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in the previous subsection; and �̅�𝑌𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. = ∑ 𝑌𝑌𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

𝑛𝑛
𝑖𝑖=1 . The desirable result of this test is 

that whenever its value is close to a positive integer one.

Implementation and Discussion 
As the proposed uncertainty model involves hourly clearness index calculation, the 
computation of monthly average daily clearness index is necessary providing only 
monthly average solar irradiation. Therefore, two monthly quantities are used for 
Jan. and July, 8.8 M𝑗𝑗. 𝑚𝑚−2 and 24.4 M𝑗𝑗.𝑚𝑚−2 respectively. This is as we intend, in 
addition, to test the seasonal variations in the performance of the model. 𝛽𝛽 is chosen 
to be 30° and 𝑘𝑘𝑡𝑡 𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑘𝑘𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚 to be 0 and 1.4pu, respectively. Moreover, ground 
reflectance is 0.2pu. It is of importance to mention that for data sampling from the 
proposed model the Quasi Monte Carlo Method is utilized with the number of 
samplings is equal to the empirical data involved. In the meanwhile, the 1-min 
dataset of solar radiation can be obtained from Australian Bureau of Meteorology 
with the support of Australian Solar Institute (works under Australian Renewable 
Energy Agency - ARENA). The years considered in the current study are 95, 96, 97, 
04, 05, 06, 07, 08, 10, 11, 14, 15, 16 for assessment of the model in January and 95, 
96, 97, 04, 05, 06, 07, 08, 10, 11, 14, for the month July, resulting, for each hour, 
24180 and 20460 measurements, respectively. The work is implemented using 
Matlab and MS Excel and run on Intel® i7-2600 4-core @ 3.4GHz processor.  

In the implementation and assessment of the model, average hourly solar radiation 
is achieved for each consecutive minutes, which is the most common convention for 
characterizing solar radiations in short-time series analysis. From the presented 
simulation and result, it is clear that the presented model covers the most possible 
outcomes in solar radiation modelling in Australia. The statistics employing 
goodness-of-fit techniques mentioned in the previous section are shown in the 

 

Figure 2 Empirical data of beam and diffuse solar radiations combined in Adelaide.
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Tables 1 and 2. In these two tables, model assessment accounted for seasonal 
variations are present where summer in Table 1 and winter in Table 2.  

The statistical data from the assessment show various results as some are 
significantly noteworthy. The bolded results are distinguished among the rest to be 
desirable. It is clear that the presented modeling results are not consistent for 
individual day times, as in Table 1 & 2 (a), (b) or for 𝑛𝑛, as in Table 1 & 2 (c) has 
been given. However, there is a tendency that the model performs batter overall 
when 𝑛𝑛 𝑛 30, according to RMSE. In terms of MBE, the statistics obtained for certain 
days distributed around the month, (10, 15, 20, 25, 30), show an acceptable fit 
between measured data and modelled ones.  

The outcome of the presented results are consistent with other studies such as in [14] 
where ∓10% is considered satisfactory. Based on the sign of MBE tests, no
overestimation is noticed for the assessment of January while in July over-/under-
estimations are obvious. KST and 𝑅𝑅2 are implemented and compared with RMSE 
and MBE as, in Table 1(a), KST shows similar assessment with RMSE and MBE. 
This is while in Table 2(b) the KST and 𝑅𝑅2 are in agreement with MBE at 12:00PM.  
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and MBE as, in Table 1(a), KST shows similar assessment with RMSE and MBE. 
This is while in Table 2(b) the KST and 𝑅𝑅2 are in agreement with MBE at 12:00PM.  

Table 1. Statistics obtained employing RMSE, MBE, 𝐑𝐑𝟐𝟐 and KST for: a) 
different times of a day when 𝑛𝑛 = 15 of January, b) different times of 
a day when 𝑛𝑛 = 30 of January, c) an hour around noon of different 𝑛𝑛

in January.
(a)

Day time RMSE MBE KST 𝑹𝑹𝟐𝟐 

09:00AM 6.1535 -0.9744 0.0164 -1.9793 

10:00AM 3.7191 -0.6683 0.0105 -1.1501 

11:00AM 4.7896 -0.7512 0.0139 -1.0727 

12:00PM 4.5223 -0.7629 0.0160 -0.9765 

(b)
Day time RMSE MBE KST 𝑹𝑹𝟐𝟐 

09:00AM 1.7170 -0.1121 0.0174 -0.9286 

10:00AM 1.0822 -0.1416 0.0127 -1.1836 

11:00AM 1.4021 -0.2211 0.0121 -1.0813 

12:00PM 1.3748 -0.3022 0.0151 -1.2591 

(c)
𝒏𝒏 RMSE MBE KST 𝑹𝑹𝟐𝟐 

5 33.3050 -7.0233 0.0208 -5.9079 

10 8.5701 -1.6641 0.0175 -2.0678 

15 3.9784 -0.6463 0.0157 -0.8369 

20 2.3555 -0.3349 0.0149 -0.5994 

25 1.6203 -0.2616 0.0150 -0.8457 

30 1.3748 -0.3022 0.0151 -1.2591 
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Overall, the objectiveness of the goodness-of-fit techniques proves the acceptable 
quality of the proposed model. However, due to the limited range of empirical data 
to within few years a few “non-desirable” values of RMSE, MBE, 𝑅𝑅2 and KST can 
be seen. Indicating that for a more accurate modelling there is a need to have fully 
evaluate solar prediction model for more years. 

Table 2. Statistics obtained employing RMSE, MBE, 𝐑𝐑𝟐𝟐 and KST for: a) 
different times of a day when 𝑛𝑛 = 15 of July, b) different times of a 
day when 𝑛𝑛 = 30 of July., c) an hour around noon of different 𝑛𝑛 in

July.
(a)

Day time RMSE MBE KST 𝑹𝑹𝟐𝟐 

09:00AM 5.4950 -0.5668 0.0470 -24.9514 

10:00AM 8.4597 -0.8117 0.0442 -13.3852 

11:00AM 4.9798 -0.6498 0.0375 -8.9466 

12:00PM 8.1474 -0.8518 0.0352 -7.2341 

(b)
Day time RMSE MBE KST 𝑹𝑹𝟐𝟐 

09:00AM 0.8828 0.6268 0.0452 -28.1024 

10:00AM 1.1153 0.5053 0.0432 -14.8841 

11:00AM 0.7712 0.4496 0.0347 -10.3655 

12:00PM 1.0730 0.3727 0.0333 -9.3545 

(c)
𝒏𝒏 RMSE MBE KST 𝑹𝑹𝟐𝟐 

5 294.0569 -45.9685 0.0394 -19.5802 

10 41.0301 -6.4490 0.0362 -11.8846 

15 10.2086 -1.2191 0.0353 -7.7100 

20 3.7727 -0.0592 0.0348 -6.3111 

25 1.8125 0.2873 0.0341 -6.9740 

30 1.0730 0.3727 0.0333 -9.3545 
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Conclusion 
This paper presents a new uncertainty model for the estimation of total solar 
radiation reaching Australian rooftops. The uncertainty is characterized by the PDF 
of clearness index when the diffuse fraction is functionally correlated through the 
utilization of logistic relation. Four assessment techniques are employed to examine 
the effectiveness of the model with the involvement of high resolution data recorded 
for Adelaide.  

The assessment covers the day hours for two different days taken seasonal variations 
into consideration.  In this assessment, different day times give different outcomes 
when an hour around noon and three before noon. However, there is an agreement 
with root mean square error (RMSE), mean bias error (MBE) and Kolmogorov-
Smirnov test (KST) in evaluating the model during the hour around 10:00AM when 
the number of the day is 15. While the agreement is apparent for MBE, KST and the 
correlation coefficient (𝑅𝑅2) when 12:00PM at 30 as a day’s number in the model. 
Although the agreements do not exactly occur in all times and days, other assessment 
results are still within the acceptable range comparing with other work, mentioned 
in the main scripts.  

The considerations that should be paid for future work are more assessments on other 
Australian cities. Moreover, Expanding the time domain with different day times 
could yield more reliable outcomes of the proposed model. 
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