Hydrogen production from bio-fuels using precious metal catalysts

Joachim Pasel*1, Sebastian Wohlrab2, Mikhail Rotov3, Katrin Löhken1, Ralf Peters1, Detlef Stolten1,3

1Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, IEK-3: Electrochemical Process Engineering, 52425 Jülich, Germany
2Leibniz Institute for Catalysis at the University of Rostock (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
3Chair for Fuel Cells, RWTH Aachen University, Germany

Key words: catalyst activity; catalyst characterization; autothermal reforming; commercial diesel fuel; fuel cells

* Corresponding author: tel: +49 2461 615140; fax: +49 2461 616695; e-mail: j.pasel@fz-juelich.de

Abstract

Fuel cell systems with integrated autothermal reforming unit require active and robust catalysts for H2 production. Thus, an experimental screening of catalysts for autothermal reforming of commercial biodiesel fuel was performed. Catalysts consisted of a monolithic cordierite substrate, an oxide support (γ-Al2O3) and Pt, Ru, Ni, PtRh and PtRu as active phase. Experiments were run by widely varying the O2/C and H2O/C molar ratios at different gas hourly space velocities. Fresh and aged catalysts were characterized by temperature programmed methods and thermogravimetry to find correlations with catalytic activity and stability.

Introduction

According to the current policies scenario, by 2030 the global CO2 emissions will be more than 50% higher than today. In addition, the world population is supposed to grow to more than 9 billion of people in 2050. As a consequence, the energy demand strongly increases, especially driven by China and India. The Institute of Energy and Climate Research (IEK-3) at Forschungszentrum Jülich has been developing a two-step approach to contribute to facing these environmental problems. On the one hand, efficient fuel cell systems based on the autothermal reforming of diesel fuels have been developed, which can be used as auxiliary power units for efficient on-board power supply in aircraft or long-haul trucks, for example. On the other hand, a renewable Bio-To-Liquid (BTL) fuel is used as feedstock for these systems.

Biodiesel fuel synthesized by hydro-treating of triglycerides

Transesterification is one of the most important routes for the production of bio-fuels [1-3]. During this process, triglycerides from vegetable oil or animal and plant fats are converted with alcohol molecules (methanol or ethanol) yielding mono-alkyl esters and glycerol. The mono-alkyl ester molecules then make up the bio-diesel. Another option for the production of bio-diesel is hydro-treating. This process
can be run in existing petroleum refineries [4]. Figure 1 shows a simplified scheme for the conversion of triglycerides contained in Jatropha oil, algae oil or plant and animal fats to straight-chain and branched alkanes [4]. In the first two steps of this reaction scheme, the triglyceride molecule is hydrogenated and split into a number of intermediates which can be monoglycerides, diglycerides and carboxylic acids. These intermediates are then converted into alkanes on three different routes: decarboxylation, decarbonylation and a combination of hydrogenation with dehydration. Reaction equations (1)-(3) show exemplarily the different routes for alkane production starting from carboxylic acids. Decarboxylation involves converting a carboxylic acid into a methyl group and CO$_2$ as shown in equation (1). CO is produced by decarbonylation where the carboxylic carbon is reduced by hydrogen to yield a methyl group, CO and water appear as side products, as shown by equation (2). During the combination of hydrogenation with dehydration the carboxylic acid reacts with hydrogen to produce an alkane and water as shown by the third equation [4].

$$\begin{align*}
R-\text{CH}_2\text{-COOH} & \leftrightarrow R-\text{CH}_3 + \text{CO}_2 & (1) \\
R-\text{CH}_2\text{-COOH} + \text{H}_2 & \leftrightarrow R-\text{CH}_3 + \text{CO} + \text{H}_2\text{O} & (2) \\
R-\text{CH}_2\text{-COOH} + 3 \text{H}_2 & \leftrightarrow R-\text{CH}_2\text{-CH}_3 + 2 \text{H}_2\text{O} & (3)
\end{align*}$$

For the investigations in this work, so-called NExBTL diesel fuel produced by the Finnish company Neste was used as fuel for the autothermal reforming reactor. NExBTL diesel fuel has a sulfur mass proportion of less than 1 ppm and a fraction of aromatics far lower than 1 vol%.

Figure 1 Simplified scheme for the conversion of triglycerides contained in in Jatropha oil, algae oil or plant and animal fats to straight-chain and branched alkanes [4]
Catalyst preparation

The catalysts were synthesized in mass fractions related to the cordierite substrates, whereby for the oxide support and the active metal phase approx. 10 wt. % and 1 wt. %, respectively, were obtained. Each value referred to the total mass of the catalyst. The synthesis of the support γ-Al₂O₃ was identical to that described in previous work [5] except for the temperature, at which the impregnated cordierite substrate was dried after impregnation. This temperature was decreased from 110 °C to 80 °C in order to reach a more homogeneous coating of the support on the substrate. For the synthesis of the bimetallic catalyst PtRu/γ-Al₂O₃ with 0.5 wt. % Pt and 0.5 wt. % Ru, the cordierite substrate, which was already coated with γ-Al₂O₃, was at first impregnated with a precursor solution of Ru(O₂C₅H₇)₃ (tris(acetylacetonato)ruthenium (III), dissolved in tetrahydrofurane). This impregnation step was performed twice from the top and the bottom side of the cylindrical substrate, respectively, to ensure a homogeneous coating. The substrate was then dried at 60 °C for 2 hours and calcined at 700 °C for 1 hour. In a second step, this substrate was impregnated with a precursor solution of [Pt(NH₃)₄](NO₃)₂ (tetraammineplatinum (II) nitrate). Then, the substrate was dried at 80 °C for 2 hours and calcined at 700 °C for 1 hour. For the synthesis of the bimetallic catalyst PtRh/γ-Al₂O₃ with 0.5 wt. % Pt and 0.5 wt. % Rh, the γ-Al₂O₃ coated cordierite substrate was at first impregnated with a precursor solution of Rh(NO₃)₃, then dried at 80 °C for 2 hours and calcined at 700 °C for 1 hour. Again, the impregnation step was performed twice from the top and the bottom side of the cylindrical substrate, respectively, to ensure a homogeneous coating. In a second step, the substrate was impregnated with a precursor solution of [Pt(NH₃)₄](NO₃)₂ (tetraammineplatinum (II) nitrate), dried at 80 °C for 2 hours and calcined at 700 °C for 1 hour. The preparation of the monometallic catalyst Pt/γ-Al₂O₃ with 1.0 wt. % was performed by impregnation of the γ-Al₂O₃ coated cordierite substrate with a precursor solution of [Pt(NH₃)₄](NO₃)₂ (tetraammineplatinum (II) nitrate). The substrate was then dried at 80 °C for 2 hours and calcined at 700 °C for 1 hour.

Analogously, the monometallic catalyst Ru/γ-Al₂O₃ with 1.0 wt. % was prepared by impregnating the γ-Al₂O₃ coated cordierite substrate with a precursor solution of Ru(O₂C₅H₇)₃ (tris(acetylacetonato)ruthenium (III), dissolved in tetrahydrofurane). The substrate was then dried at 80 °C for 2 hours and calcined at 700 °C for 1 hour. The catalyst Ni/γ-Al₂O₃ was synthesized using a Ni(NO₃)₃ * 6 H₂O precursor solution. The γ-Al₂O₃ coated cordierite substrate was impregnated with this solution, dried at 80 °C for 2 hours and calcined at 700 °C for 1 hour.

Results and discussion

In the above mentioned previous work by our group [5], it was demonstrated that among the investigated samples Rh/γ-Al₂O₃, Rh/La-Al₂O₃, Rh/CeO₂, Rh/Gd-CeO₂, Rh/ZrO₂ and Rh/Y-ZrO₂ the catalyst Rh/γ-Al₂O₃ had the highest initial catalytic activity and showed the lowest catalytic deactivation in the course of the applied evaluation pattern under rough reaction conditions. For that reason, it was decided to choose γ-Al₂O₃ as catalyst support for the experiments of this contribution. In this respect, Figure 2 shows H₂ concentrations of catalysts Pt/γ-Al₂O₃, Ru/γ-Al₂O₃, Ni/γ-Al₂O₃, PtRh/γ-Al₂O₃ and PtRu/γ-Al₂O₃ as a function of the H₂O/C molar ratio at an O₂/C molar ratio of 0.47 and different GHSVs. NExBTL diesel fuel was used. For means of comparison, the corresponding trend of the H₂
concentration of catalysts Rh/γ-Al2O3 from previous work taken under identical reaction conditions was added to Figure 2. The first sequence was started at a H2O/C molar ratio of 2.1 and a GHSV of 59,000 h⁻¹. That means, Figure 2 has to be interpreted from right to left.

Figure 2 H2 concentration on all six catalysts as a function of the H2O/C molar ratio, O2/C molar ratio = 0.47, at different mean GHSVs, NExBTL diesel fuel

Figure 2 shows a very low H2 concentration in the range of only 3 vol% for the catalyst Ni/γ-Al2O3 at the beginning of the first sequence (H2O/C molar ratio of 2.1). The experimental evaluation of this catalyst had to be stopped after this first experiment. Otherwise, the large residual mass stream of unconverted hydrocarbons in NExBTL diesel fuel would have severely contaminated and destroyed many components of the test rig downstream the catalytic test reactor including the gas analytical system. Also the sample Pt/γ-Al2O3 showed comparatively low H2 concentrations between 16 and 11 vol% during the first sequence in Figure 2. The values of catalyst Ru/γ-Al2O3 started at a higher level of approx. 31 vol% but then decreased with decreasing H2O/C molar ratio to approx. 23 vol%. The bimetallic catalyst PtRu/γ-Al2O3 revealed very stable H2 concentrations of approx. 27 vol% independent of the H2O/C molar ratio. Thus, the addition of Ru to the Pt-based catalyst had a very positive effect on the catalytic activity. The bimetallic sample PtRh/γ-Al2O3 and the reference catalyst Rh/γ-Al2O3 showed highest H2 concentrations ranging from 36 to 34 vol% for the bimetallic catalyst and from 33.5 to 34 vol% for the reference catalyst from previous work. Figure 2 in the middle and on the left show the results of the second and third experimental sequence with respect to H2 concentrations of the five investigated catalysts and the reference sample. The catalysts were not replaced between the first and second or between the second and third sequence. This means that the series of sequences run with each catalyst can be considered an accelerated aging experiment. It can be seen that during sequences 2 and 3 the H2 concentrations of the catalyst Pt/γ-Al2O3 further decreased to values between 9 vol% and only 3 vol%. An additional deactivation of this catalyst for autothermal reforming occurred. As a consequence of the deactivation step from the first sequence, the H2 concentrations of the monometallic catalyst Ru/γ-Al2O3 were always lower than those of the bimetallic sample PtRu/γ-Al2O3 during the second and third sequence. At a GHSV of 44,000 h⁻¹, they were almost constant at 22 – 23 vol% and thus in the same order magnitude as after
the deactivation step in the first sequence. During the third sequence at a GHSV of 29,000 h⁻¹, the values for the H₂ concentration of Ru/γ-Al₂O₃ slightly increased to 25 vol% at most favorable H₂O/C molar ratios between 2.1 and 1.7. Obviously, the lower residence time during the third sequence had a positive effect on the catalytic activity of Ru/γ-Al₂O₃. As mentioned above the H₂ concentrations of the bimetallic sample PtRu/γ-Al₂O₃ were always slightly higher than those of Ru/γ-Al₂O₃ during the second and third sequence. The values for PtRu/γ-Al₂O₃ were quite stable between 25 and 26 vol% thus showing no sign of deactivation. However, it can be concluded from the first three sequences that both catalysts, Ru/γ-Al₂O₃ and PtRu/γ-Al₂O₃, were also not suitable for efficient autothermal reforming of BTL diesel fuel. The observed H₂ concentrations were simply too low compared to those given in the literature. This would lead to poor H₂-productivity of the reforming step within a fuel cell system and thus also significantly reduce the overall efficiency of the whole fuel cell system. Also during the second and third sequence the H₂ concentrations of the bimetallic catalyst PtRh/γ-Al₂O₃ were highest among the investigated samples and varied between 34 and 36 vol% at most favorable H₂O/C molar ratios between 2.3 and 1.9. Under these reaction conditions these values were even higher than those of the reference catalyst Rh/γ-Al₂O₃, which was considered suitable for autothermal reforming of diesel fuels in previous work [5]. So, from the first three sequences with widely varying H₂O/C molar ratios it can be concluded that the bimetallic catalyst PtRh/γ-Al₂O₃ from this work is promising for the autothermal reforming of BTL diesel fuel. It showed a high initial catalytic activity and no detectable signs of deactivation.

Figure 3 H₂ concentration on all six catalysts as a function of the O₂/C molar ratio, H₂O/C molar ratio = 1.9, at different mean GHSVs, NExBTL diesel fuel

In Figure 3 the influences of the O₂/C molar ratio at three different mean GHSVs on the catalytic activity and the stability of the catalysts from this work and the reference catalyst are shown. The pre-aged catalysts from the first three sequences were not replaced. So, the accelerated aging experiment continued. It becomes obvious from Figure 3 on the right that the bimetallic catalyst PtRh/γ-Al₂O₃ remained as active as the reference catalyst during the fourth sequence. H₂ concentrations were in the range between 34 and 33 vol% and almost identical to those of the reference catalyst Rh/γ-Al₂O₃. The addition of Rh by Pt did not lead to any decrease in the catalytic activity although the trend for the monometallic catalyst Pt/γ-Al₂O₃ in Figure 3 would suggest this conclusion. As during the first three
sequences the H$_2$ concentrations of Pt/γ-Al$_2$O$_3$ were very low showing only values between 3 and 2 vol%.

In Figure 3 on the right the H$_2$ concentrations of the bimetallic sample PtRu/γ-Al$_2$O$_3$ and the monometallic catalyst Ru/γ-Al$_2$O$_3$ were very similar. They started at approx. 20 vol% and decreased to 14 vol% at an O$_2$/C molar ratio of 0.40. Obviously, a significant deactivation of these samples occurred under the rough conditions of the fourth sequence. As can be seen in Figure 3 in the middle and on the left, the deactivation of the catalyst Ru/γ-Al$_2$O$_3$ proceeded. It revealed H$_2$ concentration gradients between 20 and 12 vol% at a GHSV of 41,000 h$^{-1}$ and between 14 and 12 vol% at a GHSV of 27,000 h$^{-1}$, respectively. The H$_2$ concentrations of the sample Pt/γ-Al$_2$O$_3$ remained at their very low level in the range of 3 to 2 vol%. In both figures (middle and left), a slight deactivation of the bimetallic catalyst PtRh/γ-Al$_2$O$_3$ could be observed. H$_2$ concentrations slightly decreased from the range of 34 to 33 vol% to the level of 32 vol% and 31 to 32 vol%, while the concentrations of the reference catalyst remained constant. Nevertheless, catalyst PtRh/γ-Al$_2$O$_3$ confirmed the conclusion drawn from the results of the first three sequences that it is a promising candidate for the autothermal reforming of BTL diesel fuel with high initial catalytic activity and only marginal signs of deactivation under rough reaction conditions.

In the following, the reducibility of the catalysts from this work will be analyzed with the aid of measurements from temperature-programmed reduction. Figure 4 on the left shows the profiles from the temperature programmed reduction of the fresh catalysts Ni/γ-Al$_2$O$_3$, Pt/γ-Al$_2$O$_3$, Ru/γ-Al$_2$O$_3$, PtRh/γ-Al$_2$O$_3$ and PtRu/γ-Al$_2$O$_3$, before they were subjected to the evaluation pattern. Again for comparison reasons, the corresponding TPR profile of the reference catalyst Rh/γ-Al$_2$O$_3$ is added. The profile a of fresh catalyst Ni/γ-Al$_2$O$_3$ shows a very broad signal in the temperature range between 300 and 900 °C, which can attributed to the formation of solid-state solutions of nickel-aluminum-oxide [6]. This signal has a comparatively high intensity, which points at a high reducibility of the fresh sample. The finding stands in sharp contrast to the very low catalytic activity of Ni/γ-Al$_2$O$_3$ for the autothermal reforming of NExBTL diesel. The profile b of the catalyst Pt/γ-Al$_2$O$_3$ does not show any reduction signal at all. This means that this sample does not possess any reducibility, which can be detected by temperature programmed reduction, and thus that it is only marginally able to catalyze the autothermal reforming of NExBTL diesel fuel by adsorbing and releasing electrons. This result is well consistent with the comparatively low initial catalytic activity of Pt/γ-Al$_2$O$_3$. In the literature [7], the reduction of platinum oxide is reported at a temperature of approx. 250 °C. In the case of the catalyst Ru/γ-Al$_2$O$_3$, the TPR profile c shows a weak shoulder at 105 °C and a more pronounced peak at 145 °C. In the literature [8], the weak shoulder is assigned to the conversion of RuO$_3$ to RuO$_2$, while the main peak is explained by the reduction of RuO$_2$ to elementary Ru. In the profile e of the fresh catalyst PtRu/γ-Al$_2$O$_3$ very similar signals for the consumption of H$_2$ were detected at temperatures of 103 and 139 °C, respectively. As in the case of catalyst Ru/γ-Al$_2$O$_3$, they can be explained by the conversion of RuO$_3$ to RuO$_2$ and the reduction of RuO$_2$ to elementary Ru [9]. No interaction between Ru and Pt particles possibly forming a new joint phase was detected. This is in accordance with results from the literature [10]. The overall intensity of both peaks of PtRu/γ-Al$_2$O$_3$ in profile e is slightly lower than that of the monometallic sample Ru/γ-Al$_2$O$_3$ in profile c. That means that the addition of Pt to the Ru-based
catalyst lowered the reducibility in the fresh state. This graduation is in good accordance with the initial
H₂ concentrations of these both catalysts showing initial values of 31 vol% (Ru/γ-Al₂O₃) and 27 vol%
(PtRu/γ-Al₂O₃), respectively. The largest consumption of H₂ during the TPR experiments with the fresh
catalysts was observed in the case of sample PtRh/γ-Al₂O₃. In profile d two very pronounced signals at
temperatures of 83 and 150 °C were identified, which can be attributed to the reduction of a three-
dimensional Rh₃Oₓ phase or a dispersed two-dimensional Rh₃Oₓ phase on γ-Al₂O₃ [11]. The overall
intensity of these signals is even significantly higher than that of the signals of the monometallic
catalyst Rh/γ-Al₂O₃ (cf. profile f). Also in this case no interaction between the two metals Pt and Rh
forming a joint phase could be detected in profile d. The observed outstanding reducibility of the fresh
sample PtRh/γ-Al₂O₃ is in good accordance with its very high initial catalytic activity with H₂
concentrations in the range of 36 to 35 vol%. Figure 4 on the right shows the profiles from the
temperature programmed reduction of the aged catalysts Ni/γ-Al₂O₃, Pt/γ-Al₂O₃, Ru/γ-Al₂O₃, PtRh/γ-
Al₂O₃ and PtRu/γ-Al₂O₃, after they were subjected to the evaluation pattern as described above. A
comparison of the figures on the left and on the right makes obvious that in any case the profiles of the
fresh and aged catalysts are very similar with respect to the position of the respective peaks. Profile a
of the aged catalyst Ni/γ-Al₂O₃ again shows the broad signal between 300 and 900 °C. Again, no H₂
was consumed by the catalyst Pt/γ-Al₂O₃. In the profiles c and e of the catalysts Ru/γ-Al₂O₃ and
PtRu/γ-Al₂O₃ the weak shoulder at approx. 130 °C and the more pronounced peaks at 160 and
145 °C, respectively, can be rediscovered. Again as in the case of the fresh samples, the overall
intensity of the two peaks of the aged sample PtRh/γ-Al₂O₃ (98 and 144 °C) is by far highest. The only
difference is that for the aged catalyst the peak at 98 °C is less pronounced than it was in the case of
the fresh catalyst PtRh/γ-Al₂O₃. For the catalyst Ru/γ-Al₂O₃ a significant decrease in the overall
intensity of the weak shoulder and the main peak could be detected after the sample was run in the
evaluation pattern indicating a loss in reducibility. This is in good agreement with the observed
deactivation of this catalyst in the course of the evaluation pattern. However with all other catalyst, the
overall intensities of fresh and aged samples were comparable. The rough reaction conditions applied
during the evaluation pattern did not significantly lower the reducibility of the active phases of these
catalysts. This is in contradiction to the deactivation phenomena, which were observed with the
catalysts Pt/γ-Al₂O₃, PtRu/γ-Al₂O₃ and PtRh/γ-Al₂O₃.
In the next subsection, the results of thermogravimetric methods try to shed additional light on causes for the reduced H₂ concentrations of the samples in this contribution. The catalysts were heated to temperatures of almost 950 °C in a stream of air while the change in mass was simultaneously determined. The goal was to quantitatively investigate whether carbon-containing deposits were formed on the surfaces of the five catalysts in this study. It becomes obvious in Figure 5 that in the cases of the catalysts Pt/γ-Al₂O₃, Ni/γ-Al₂O₃ and PtRu/γ-Al₂O₃ significant mass losses were detected during the thermogravimetric analyses in the temperature range between 500 and 800 °C. They
amounted to 1.4 ma% for Pt/\(\gamma\)-Al\(_2\)O\(_3\), 1.1 ma% for Ni/\(\gamma\)-Al\(_2\)O\(_3\) and even 3.5 ma% for PtRu/\(\gamma\)-Al\(_2\)O\(_3\). The analysis of the off-gases by means of mass spectrometry revealed high concentrations of carbon dioxide in the temperature range between 500 °C and 800 °C. Cheng et al. [12] found in their work a combustion temperature of coke on Rh/\(\gamma\)-Al\(_2\)O\(_3\) of 600 °C. Therefore, it can be derived that the observed mass losses are due to the burn-off of carbon-containing components from the surface of the catalysts which were formed during experiments on autothermal reforming. Forzatti and Lietti [13] describe how the carbon-containing deposits diminish the catalytic activity, sometimes strongly, since they accumulate on the active catalyst centers so that the latter are no longer accessible for the reactants in autothermal reforming. For the catalysts Pt/\(\gamma\)-Al\(_2\)O\(_3\) and PtRu/\(\gamma\)-Al\(_2\)O\(_3\) from this work, the detected carbonaceous deposits can explain the observed loss in catalytic activity of these samples during the evaluation pattern. The thermogravimetric investigation of the catalysts Ru/\(\gamma\)-Al\(_2\)O\(_3\) and PtRh/\(\gamma\)-Al\(_2\)O\(_3\) showed only minor carbon-containing deposits on the catalysts’ surfaces. Therefore, correlations between these findings and the catalytic activities of the catalysts cannot be derived.

Conclusions

Of the samples tested, PtRh/\(\gamma\)-Al\(_2\)O\(_3\) was found to be the most active and robust catalyst for the autothermal reforming of NExBTL diesel fuel. H\(_2\) concentrations were in the range of 35 - 36 vol% and decreased only slightly when the evaluation pattern was applied. In contrast, Pt/\(\gamma\)-Al\(_2\)O\(_3\) showed the strongest deactivation. Ni/\(\gamma\)-Al\(_2\)O\(_3\) was not active at all. As described above in detail, decreased reducibilities of the active phases and coke depositions on the catalyst surfaces can be adduced to explain the deactivation phenomena observed with the catalysts from this work.

References

