The Design of The Monitoring Tools Of Clean Air Condition And Dangerous Gas CO, CO₂, CH₄ In Chemical Laboratory By Using Fuzzy Logic Based On Microcontroller

Slamet Widodo ¹,²,³, M.Miftakul Amin², Adi Sutrisman³

¹,²,³ Department of Computer Engineering, Politeknik Negeri Sriwijaya, Palembang, Indonesia

Abstract: There are many phenomena that humans are exposed to toxins from certain types such as CO₂, CO₂, and CH₄ gases. The device used to detect large amounts of CO, CO₂, and CH₄ gas in air in enclosed spaces using MQ 135 gas sensors of different types based on the three sensitivity of the Gas. The results of testing the use of sensors MQ 135 on the gas content of CO, CO₂, and CH₄ received by the sensor is still in the form of ppm based on the maximum ppm detection range of each sensor. Active sensor detects CO 120 ppm gas, CO₂ 1600 ppm and CH₄ 1ppm "standby 1" air condition with intermediate rotary fan. Active sensor detects CO 30 ppm gas, CO₂ 490 ppm and CH₄ 7 ppm "Standby 2" with low rotating fan output. Fuzzy rulebase logic for motor speed when gas detection sensor CO, CO₂, and CH₄ output controls the motion speed of the fan blower. Active sensors detect CO 15 ppm, CO₂ 320 ppm and CH₄ 45 ppm "Danger" air condition with high fan spin fan. At the gas level of CO 15 ppm, CO₂ 390 ppm and CH₄ 3 ppm detect "normal" AC sensor with fan output stop spinning.

1 Introduction

Currently, a major concern of scientists is global warming, largely due to huge emissions of carbon dioxide (CO₂). Considered as one of the main greenhouse gases inducing a warming climate, CO₂ concentration in the atmosphere is under special scrutiny of many weather services in the world. The program involves capturing samples of atmospheric air at the Assekrem station twice a week, using 2 special bottles of 1.5 litres. These bottles are then sent to the NOAA laboratory (Boulder-USA) to determine concentrations of major greenhouse gases: CO₂ in ppm, CH₄ and CO in ppm.[1]

In human life can not be separated from the Gas carbon monoxide Gas CO₂, Gas Carbon dioxide CO₂, and Gas Methane is CH₄ hydrocarbons. The odorless CO gas is very dangerous, Methane (Methane) is the simplest hydrocarbon in the form of gas. Pure methane is odorless, colorless, extremely flammable, asphyxian, non toxic and non corrosive. Burning one molecule of methane with oxygen will release one molecule of CO₂ (carbon dioxide).[2]

At certain depths below the earth's surface there are dangerous gases such as Carbon Dioxide (CO₂) and Methane gas (CH₄). While carbon monoxide gas (CO) can be produced from leakage or emissions of fuel used as a source of propulsion power from the generator set and room temperature. Third gas is very dangerous if accumulate in the room without air circulation is not good. Hazardous gases that accumulate will often be inhaled by the workers who are in the room. [4]

Health problems will arise if inhaled methane gas in high concentrations. The symptoms are oxygen deprivation, rapid breathing, increased pulse rate, decreased muscle coordination, increased emotion, nausea, vomiting, loss of consciousness, respiratory failure, and death. [4]

To solve the above problem, it is necessary to design the toxic detector of toxic monoxide (CO) gas, Carbon Monoxide (CO₂) and Gas methane (CH₄) gas as human safety from poisoning. This research was built for gas leak detection tool CO, CO₂, and CH₄ which work using MQ-7 Sensor. The MQ-7 sensor is a gas sensor that can detect vehicle exhaust gases in air carbon monoxide (CO) gas. If the CO gas is detected, the MQ-7 sensor will provide input (insert) to the Arduino output of the microcontroller which has three types of outputs, Namely LCD display (Liquid Crystal Display), Motor Fan, and buzzer. LCD function information Gas CO, CO₂, and CH₄ in ppm quantities. The LCD is used to provide information on the occurrence of gas leak indoors when the sensor reads CO₂, and CH₄ through microcontroller. Exhaust Fan is used to neutralize air conditions in the room according to sensor readings against harmful gas gases in ppm. Fan motor rotation works based on fuzzy logic during low, middle, and high conditions. The larger the hazardous gas gases detected by the sensor in ppm size the microcontroller will send the information to the fan circuit with high conditions, as well as the low conditions the microcontroller will send the information to the fan at low speed. The fan driver is used to neutralize the condition of the room by removing air inside the room when it detects CO, CO₂ and CH₄ gas in the laboratory and workshop room in safe, standby, alert and danger conditions.

Corresponding author: slametwidodo160573@gmail.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
2. Experimental details

Stages done in this research is by the method of planning and design. Here is the design of CO gas detector using ATMEGA 8535. [4]

This CO gas leak detector will work with the MQ-7 sensor and MQ 135 is a gas sensor that detects exhaust gases in the air of Carbon Monoxide (CO), Carbon Dioxide (CO2) and Methane (CH4) gas. If the CO, CO2 and CH4 gases have been detected then the MQ-7 sensor will give input (insert) to the microcontroller, then from the microcontroller has four outputs, LCD (Liquid Crystal Display), Driver Motor fan, and buzzer. LCD is used to display information readings of sensor detectors CO, CO2, and CH4. Driver The fan motor is used to drive the fan blades when it is detected CO, CO2 and CH4 gases inside the room during Safe, Standby1, Standby and danger so that space will be neutralized toxic gas content in ppm. LCD gives message information to the user that there is a toxic Gas leak.

The driver acts as an additional link to connect between the microcontroller with the buzzer and the Exhaust Fan. Explanation of the flow diagram of the CO gas detector in the laboratory room Figure 1. the following:

The flow and work on the flow diagram is first to initialize the serial and then seen the input of the three gas sensors CO, CO2, and CH4 which will appear in gas levels. Then the sensor will work based on the smoke fumes detected by the MQ-7 and MQ-135 sensors. When the CO, CO2 and CH4 gases Active sensors detect CO 120 ppm, CO2 1600 ppm and CH4 1ppm air condition "standby 1" with medium spinning exhaust fan output. In active sensor detect CO 30 ppm gas, CO2 490 ppm and CH4 7 ppm "Standby 2" air condition with low rotating exhaust fan output. While the active sensor detects CO gas 15 ppm, CO2 320 ppm and CH4 45 ppm "Danger" air condition with High Spin Exhaust fan output. At the gas level of CO 15 ppm, CO2 390 ppm and CH4 3 ppm detected "normal" air conditioner sensors with the exhaust fan output stop spinning. To detect CO gas of 5 volt DC voltage sensor with ADC 0 - 1023 range for ADC value. For the detection of CO gas it is determined that the maximum value of the sensor to detect CO gas is connected to the microcontroller ADC at port D by 30 ppm [16]. From these provisions, the CO membership function for membership function is 0 - 30 ppm. So in order to scale the membership function accordingly ie 30 ppm then the ADC value must be divided by 34 which can be searched with the following equation: [5]

![Flowchart of How the Tool Works](image-url)
ADC divider value = ADC Value……[5]

Information:
CO (ppm) = Levels maximum desired CO gas
ADC value = 1023
So, can we enter the value
ADC divider value = 1023 / (30 ppm)
ADC divider value = 34

The divisor value of ADC = 343.2 Metode Fuzzy

Rule evaluation process In this process the specified rules will be applied. Or it could be said function is to find the value of the fuzzy output of fuzzy input. Rule made to control the work of the sensor in detecting sensor in order to generate value in accordance with the expected output. The process is a fuzzy input of the process fuzzyfication included in a rule that has been created to serve fuzzy output. There are several methods of decision making in fuzzy logic Mamdani among which methods Figure 2.[2]. The following picture:

![Figure 2. Decision Methods Mamdani](image)

Implications functions used in decision-making with Mamdani method by using MIN and in doing composition using MAX. The composition method is often called MAX-MIN. decision with Mamdani method. Here is a ten-rule evaluation that can be determined:

Table 1. Rule Evaluation

<table>
<thead>
<tr>
<th>No</th>
<th>Type of Gas</th>
<th>Clean air (ppm)</th>
<th>Vehicle emission (ppm)</th>
<th>Animal waste (ppm)</th>
<th>Cigarette smoke (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CO</td>
<td>2</td>
<td>1150</td>
<td>159</td>
<td>9206</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td>1132</td>
<td>156</td>
<td>9340</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
<td>1211</td>
<td>153</td>
<td>9604</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5</td>
<td>1256</td>
<td>154</td>
<td>9113</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>7</td>
<td>1252</td>
<td>148</td>
<td>9480</td>
</tr>
<tr>
<td></td>
<td>Average value</td>
<td>3.8</td>
<td>1200.2</td>
<td>154</td>
<td>9348.6</td>
</tr>
</tbody>
</table>

No	CO	2	1750	390	5200
		300	1671	387	5440
		295	1455	391	5105
		310	1723	387	5201
		312	1559	391	5130
	Average value	370.4	1631.6	389.2	5215.2

No	CH4	1	90	70	25
		2	87	73	23
		1	89	71	24
		2	88	73	22
		1	98	72	21
	Average value	1.4	90.4	71.8	23

The result of the room condition test on the CO gas, CO₂ and CH₄ gases in the Graph using Fuzzy Logic Rulebase as described below:

1. High CO₂, CH₄ Low and CO High Standby conditions

![Figure 3. Measurement Results Gas CO, CO₂ and CH₄ High Standby conditions](image)
2. Condition of CO\textsubscript{2} med, CH\textsubscript{4} Low and CO med standby output 2

![Fig 4](image-url) Measurement Results Gas CO, CO\textsubscript{2} and CH\textsubscript{4} Standby conditions

3. Condition of CO\textsubscript{2} med, CH\textsubscript{4} high and low CO output hazard

![Fig 5](image-url) Measurement Results Gas CO, CO\textsubscript{2} and CH\textsubscript{4} hazard conditions

4. Low CO\textsubscript{2} conditions, Low CH\textsubscript{4} Low and low CO output are safe

![Fig 6](image-url) Measurement Results Gas CO, CO\textsubscript{2} and CH\textsubscript{4} Safe conditions

4 Conclusion

In conclusion, this study shows that the test results of the system when the active sensor detects CO 120 ppm gas, CO\textsubscript{2} 1600 ppm and CH\textsubscript{4} 1ppm air condition "standby 1" with a medium spinning exhaust fan output. While the active sensor detects CO gas 15 ppm, CO\textsubscript{2} 320 ppm and CH\textsubscript{4} 45 ppm "Danger" air condition with High Spin Exhaust fan output. At the gas level of CO 15 ppm, CO\textsubscript{2} 390 ppm and CH\textsubscript{4} 3 ppm detected "normal" air conditioner sensors with the exhaust fan output stop spinning.

References

3. Hapsari, Chrismalia; Wilujeng, Susi Agustina. Study of Carbon Dioxide Emissions (CO\textsubscript{2}) and Methane (CH\textsubscript{4}) from Waste Reduction Activity in Southern Part of Surabaya. Environmental Engineering, ITS. Surabaya, 2010
4. Aldo, Aziz Putra, Work Build Clean Air Monitoring Tool and Harmful Gas CO, CO\textsubscript{2} and CH\textsubscript{4} Using Microcontroller. (2016)