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Abstract. ATR-FTIR combined with chemometrics was applied to establish SVM classification models 
aiming to evaluate sensory quality of Chinese Moutai-flavour liquor. Transformation of ATR-FTIR data, 
selection of effective wavenumbers as well as determination of c and gamma were performed in succession, 
while the verification of models was deployed applying unknown samples. Finally, taste-prediction models 
of raw grain and cleanliness have an accuracy reaching 90%. Model of after-taste has an accuracy of 80% 
and others are lower than 70%. As for some flavours, ATR-FTIR and chemometrics technology provided an 
effective method for quality analysis of Chinese Moutai-flavour liquor. 

1 Introduction  
Moutai flavour spirit, is a typical Chinese liquor with a 
soy sauce aroma, made from grains and daqu. During 
fermentation, the metabolism of the functional micro-
organisms gives rise to highly stable heat- and acid-
resistant enzymes such as amylases, proteases, 
glucoamylases, cellulases, glucosidases, xylanases as 
well as various dehydrogenases and 
phosphoenolpyruvate carboxykinases involved in 
oxidation-reduction reactions. All kinds of extreme 
micro-organisms (such as Bacillus licheniformis [1] and 
Bacillus subtilis [2-4], which produce the soy sauce 
aroma) and enzymes, encouraged by the long production 
process, help to produce rich flavour compounds 
(including esters, aldehydes, sulphur and nitrogen) of the 
liquor. These flavor compounds enter into the basic 
distillates by means of different processes and further 
assist in the formation of the unique taste and quality of 
Moutai flavour liquor which sensory characteristics are 
as follows: a) Smell: featuring soy Moutai-flavour aroma, 
fine and strong tasting, with enduring aroma lingering in 
empty glasses. b) Taste: tasting pleasantly strong and full, 
with lingering aftertaste. c) Style: featuring soy Moutai-
flavour aroma, refined and delicate, pleasantly strong 
and full, with enduring aftertaste and lingering aroma in 
empty glasses  [5]. 

The assessment of Chinese spirits is traditionally 
performed by professional tasters, which outcome 
mainly depends on the acute olfaction of tasters and this 
approach is time-consuming, labour intensive and 
affected by subjective factors or even biased. Therefore, 
researchers have been sought for sophisticated 
instruments combined with multiple analysis methods 
for decades. So far technologies such as GC [6] , GC-MS 

[7], GC-O [8] and FTIR[9], which are usually combined 
with chemometrics including PLS [10], SVM [11], ANN 
[12], CA, have been applied on quantitative or 
qualitative analysis of Chinese spirits to determine 
component, concentration [13], or to identify source, 
geographic origin [14], brand, authenticity [15] or 
storage time [16]. 

Qin Ouyang studied on prediction of the overall 
sensory score of Chinese rice wine applied NIR 
spectroscopy and Back propagation artificial neural 
network (BPANN) combined with adaptive boosting 
(AdaBoost) algorithm [17]. Daniel Cozzolino [18] 
investigated the relationship between sensory analysis 
and visible and near infrared spectroscopy in two 
Australian white wine varieties using PLS regression. 
The correlation coefficients were greater than 0.70 for 
estery, lemon and honey, and less than 0.50 for 
passionfruit, overall flavor and sweetness in both 
calibration and cross validation.  

This paper aimed at predicting sensory quality of 
Moutai-flavour base liquor applying ATR-FTIR and 
SVM. 

2 Experiment  

2.1 Apparatus 

Spectrometer (Tensor 27, Bruker Ltd. ), equipped with 
an attenuated total reflectance (ATR) accessory (PIKE, 
Ltd.).  

2.2 Sample 
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Moutai-flavor base liquor (different batches from 2015-
2018) with its sensory analysis provided by Guotai 
Liquor Co. Ltd.. Sensory quality was evaluated by 
means of a score from 0 to 10 for each flavour. 
Prediction models were established using data collected 
in 2015-2017 and data of 2018 were tested these models. 
Table 1 Number of samples used in model establishment and 

verification 

Flavour Model 
Establishment 

Model 
Verification 

Raw grain 169 50 
grain 427 80 

Sourness and  
astringency 595 120 

Moutai-flavour 1611 300 
Thickness 2207 400 
Pungent 2207 400 

After-taste 2207 400 
cleanliness 2207 400 

2.3. Methods 

IR spectra were recorded with an accumulation of 32 
scans in 4000-650 cm-1 range with a resolution of 4 cm-1. 
The score of samples offered by panel of sensory 
analysis was set as one category to establish a Support 
Vector Machine (SVM) model. The establishment was 
performed on The Unscrambler (version 10.3, CAMO 
Software AS, Norway) and the infrared absorbance 
values were chosen as independent variables. 
Appropriate preprocess on infrared data should be 
selected according to the accuracy of test-models which 
are built respectively with different sets of parameters. 
Effective wave (ew) range is suggested by Principal 
Component Analysis (PCA) which x-loadings plot 
highlights regions of the most importance and performs 
as an indicator that helps to determine beneficial 
wavenumbers which contain the most significant 
information of the spectra. Finally, with the best set of 
parameters (preprocess and ew), a grid search is required 
for the best gamma and c value which are two significant 
parameters of Radial Basis Function (RBF) kernel SVM. 
C controls overfitting of model, and gamma controls the 
degree of nonlinearity of the model. Gamma is inversely 
related to sigma, which is a degree for spread around a 
mean in statistics: the higher the value of gamma, the 
lower the value of sigma, thus the less spread or the 
more nonlinear the behavior of the kernel. Finally, 
unknown samples would be predicted by the SVM 
model to confirm the accuracy of models. 

Table 2 Descriptions of preprocess on ATR FTIR 
Transformation Purpose and function 

Normalize “Scale” samples in order to get all data on 
approximately the same scale. 

Standard normal 
variate 
transformation 
(SNV) 

Remove slope variation to correct for 
scatter effects. Each spectrum xi is 
corrected individually by first centering 
the spectral values. Then the centred 
spectra are scaled by the standard 
deviation calculated from the individual 
spectral values.  

Baseline offset 
For each sample, the value of the lowest 
point in the spectrum is subtracted from 
all the variables. The result of this is that 

the minimum value is set as 0 and the rest 
are positive values.  

Detrend Remove the effects of baseline shift and 
curvi-linearity.  

Gap derivatives 

Baseline drifts are reduced and slight 
spectral differences are enhanced by 
means of the computation of 1st and 2nd 

derivatives. To avoid enhancing the 
noise, which is a consequence of 
derivation, spectra are first smoothed.  

Spectroscopic 
Convert units from absorbance by taking 
the inverse logarithm of it to give 
reflectance or transmittance respectively.  

Fig. 1 Illumination of this study 

3 Results and discussion 

3.1 ATR-FTIR spectra 

 
Fig. 2 ATR-FTIR spectra of sample collected applying Bruker 

Tensor 27 spectrometer 
Chinese spirit contains water, ethanol and flavouring 
components. But it is the flavouring components which 
have a low proportion of 1%~2% that reflect the aroma, 
taste and quality of liquor product. So ethanol was 
deducted as background when spectra collected, which 
caused the negative peaks (Shown in Fig. 2). FTIR 
spectrum reflects holistic characteristics of sample, 
which contains overall information of components that 
spectral data were regarded as multivariable and put into 
software to analyse the relationship between FTIR 
information and sensory quality which is represented by 
scores. 

Table 3 Negative peaks 
Peak(cm-1) Identification 
1087,1047 stretching vibration of C-OH 
2878 symmetric stretching of CH3 
1378 symmetric swing of CH3 
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881 stretching vibration of C-O 

3.2 Optimization of model 

Taste-prediction models were established respectively 
after a series of selections of preprocess, ew and SVM 
parameters. 

As for raw grain, preprocess of baseline or 
Spectroscopic on FTIR could lead to better validation 
accuracy. Then a PCA based on the transformed FTIR 
was performed to select ew. Scores plot and loading plot 
were shown as Fig. 3. The closer the samples are in the 
scores plot, the more similar they are with respect to the 
two components concerned. The plot can be used to 
interpret differences and similarities among samples and 
help to determine which variables are responsible for 
differences between samples. The sum of the explained 
variances for the 2 components is 98% and the plot 
shows a larger portion of the information in data, so the 

relationships can be interpreted with a high degree of 
certainty. PCA is a good way to detect important 
variables.  

Samples were divided into two parts by the ordinate 
axis. The vast majority of samples which scores were 5 
and 6 are located in second and third quadrants and those 
with 7 and 8 are most in first and fourth quadrants. This 
distribution indicates that PC1 is a major factor 
distinguishing higher scores and lower scores but an 
apparent trend between 5 and 6 or 7 and 8 wasn’t be 
found. Then loadings plot on PC1 was checked to find 
ew and 1122-920cm-1 was a significant range than others 
for classification owing to its high values on Y-axis. 
Then a grid search, which was an orthogonal test from 
0.01 to 100 on 5 levels, was conducted to seek optimal 
gamma and c value. When c was 100 and gamma was 
0.01, model has highest validation accuracy, so this 
combination was selected for SVM model of raw grain 
flavour.  

  

Scores Loadings 

Fig. 3 PCA on FTIR data with Spectroscopic transformation 
 

Table 4 Result of models produced under different parameters 

preprocess 
SVM EW 

(cm-1) 

SVM ew 
Training 

accuracy (%) 
Validation 

accuracy (%) 
Training 

accuracy(%) 
Validation 

accuracy(%) 
RAW 63 63    

1st derivative 43 43    
1st derivative + SNV 71 60 1200-678 92 55 

2nd derivative 43 43    
2nd derivative + SNV 76 57 1137-921 69 65 

Normalize(Area) 43 43    
Normalize(Mean) 71 62 1200-800 66 65 

Baseline 63 63 1200-900 63 63 
SNV 63 64    

SNV+detrend 63 63    
Spectroscopic 63 63 1122-920 69 67 

Detrend 63 63    
Detrend+SNV 63 63    

 

Table 5 Validation accuracy of models under different parameters 
C 

Gamma 0.01 0.1 1 10 100 

0.01 43.1953 63.9053 63.9053 64.4970 68.6391 
0.1 43.1953 63.3136 64.4970 63.3136 61.5385 

1 43.1953 55.6213 63.5385 56.8047 56.2130 
10 43.1953 43.1953 53.8462 51.4793 49.1124 

100 43.1953 43.1953 44.9704 44.3787 43.1953 
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Table 6 All taste models for sensory prediction established by ATR-FTIR and SVM 

Flavour Transformation Range(cm-1) Gamma C Training 
accuracy 

Validation 
accuracy 

Raw grain Spectroscopic 1122-920 0.01 100 72.19% 68.05% 
Grain 1st derivative + SNV 1200-678 0.1 1 89.70% 89.23% 

Sourness & 
astringency 2nd derivative + SNV 1800-678 0.01 1 72.15% 63.43% 

Cleanliness RAW 4000-678 100 100 100% 95.05% 
Moutai-flavour 1st derivative + SNV 1200-678 0.01 1 72.42% 66.66% 

Thickness SNV + detrend 3700-2889, 1800-678 0.1 1 80.51% 77.00% 
Pungent Spectroscopic 1100-900 1 10 80.13% 69.41% 

After-taste Spectroscopic 1145-890 0.1 100 85.06% 81.79% 
 

Other flavour models were established according to 
the above process, which performance was shown in  

 
Table 6. Models of Cleanliness, Grain, After-taste 

have better predictive capability which accuracy reach 
80%. Some flavours cannot be evaluated precisely and 
their models need to be updated and corrected 
with the large amount of experimental data continue to a
ccumulate.  

3.3 External validation 

Additional samples were predicted as unknown samples 
by the completed models to confirm accuracy (the 
consistency between predicted and sensory scorings). 
The results were listed in Table 7. It is indicated that 
grain and cleanliness have better accuracy reaching 90%. 
After-taste has an accuracy of 80% and others are lower 
than 70%. 

Table 7 Result of external validation 
flavour accuracy 

Raw grain 70% 
Grain 90% 

Sourness & astringency 70% 
Cleanliness 96% 

Moutai-flavour 66% 
Thickness 63% 
Pungent 69% 

After-taste 80% 
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