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Abstract. Composite materials consisting of several phases are widely 

used in modern construction. Numerous experiments have shown that the 

properties of structurally heterogeneous materials can differ significantly 

from those of the individual components making up the composition. 

Besides, rapidly changing coefficients of differential equations describing 

such composite materials greatly complicate the solution of boundary 

value problems even with the help of computer calculation methods. 

Therefore, the homogenization method is used. In this paper the two 

approaches propose to obtain in explicit analytical form the effective 

model of the problem of loading a heterogeneous pipe made of layered 

material, provided that the elastic properties of the material depend only on 

the distance from the center of the section of the pipe. We point to a 

method that obviously leads to an analytical result. It follows from the 

article that it is possible to choose the function that determines the structure 

of the “winding” in such a way as to obtain the stiffness characteristics of 

the pipe as close as possible to the desired with fixed mass fractions of the 

materials used. A similar approach can be applied to the study of creep 
properties of pipes made of composite materials. 

1. Introduction  

Problems for products from heterogeneous materials, in particular pipes, arise in many 

areas of construction. To improve the strength characteristics of pipes during their 

manufacture, several layers of various materials are used, which together provide high 

tightness and strength. Layers often vary considerably in stiffness. Examples include 

fibrous composites formed by longitudinal-transverse winding. Such heterogeneity is the 

cause of their specific behavior during deformation. The method of asymptotic averaging 

turns such a material into a homogeneous one, which is described by averaged equations. 

This averaging method is stated, for example in [1, 2], one of the first applications of which 

was the problems of the theory of elasticity [3, 4]. Several examples of its application are 

given in [5 – 8]. 

In this article we also want to consider the “composite“ pipe from several materials. 

The load is applied in the form of the force field acting on the surface and distributed inside 

the volume.  One of the tasks of this work is to replace a layered cylindrical pipe with a 
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one-dimensional beam, which has corresponding effective characteristics for bending, 

tension, torsion in explicit analytical form (see subsection 2.2). A similar problem was 

considered in [9-13]. In this article, it was not a cylindrical tube, but a rod with an arbitrary 

periodic structure. According to the formulation of the problem, our task is a special case of 

[9]. In the case under consideration, we can explicitly construct the above-mentioned 

effective characteristics and solve the loading problem analytically. This is due to the fact 

that in this case it is possible to explicitly solve the auxiliary boundary value problems on a 

periodicity cell necessary for constructing effective characteristics. These boundary value 

problems have periodic boundary conditions along the elastic rod and the corresponding 

Neumann conditions on the lateral surface. In this case, by introducing cylindrical 

coordinates, we can reduce these auxiliary three-dimensional problems of the theory of 

elasticity to one-dimensional systems, where only the radial variable is an independent 

variable (the angular and axial variables are not included in this system of equations). And 

the systems of equations have a divergent form. As a result of such a structure, we can 

explicitly obtain an analytical solution. In this case, the condition of periodicity in the 

direction along the pipe is fulfilled automatically, since this solution does not depend on the 

axial coordinate. It is well known that the Neumann problem does not always have a 

solution. There are necessary and sufficient conditions for the existence of a solution 

connecting the boundary conditions with the right-hand side of the system. Auxiliary 

boundary value problems contain constant matrices. It is the choice of these constant 

matrices that will ensure that the solvability conditions are satisfied. The elements of these 

matrices will be the numbers that determine the effective characteristics of the 

heterogeneous pipe, namely, the effective indicators of flexural rigidity, tensile stiffness 

and torsion. We obtain these effective indicators and auxiliary functions in an explicit 

analytical form. Forces applied to the surface can be selected in various ways. It can 

simulate a force load applied in a direction perpendicular to the pipe and parallel to the 

pipe, as well as torsion around an axis directed along the pipe or perpendicular to it. The 

available analytical solutions will allow to evaluate qualitative and quantitative 

characteristics of obtained stress-strain states. 

Another approach, considered in this paper and proposed as an “alternative”, is to 

average the equations of elasticity theory for a cylindrical body with a rapidly oscillating 

periodic layered structure with the radial symmetry in a three-dimensional cylindrical 

region, without a transition to one-dimensional spatial variable structures. It is described in 

subsection 2.1 and is an implementation of the approach developed in [1] for analyzing 

layered structures. The result for further analysis requires the use of numerical methods 

using large finite elements or differential grids with a large step (much larger than the layer 

thickness). This drastically reduces the amount of computation compared to direct 

numerical calculation, but, of course, does not lead to an analytical representation for 

solutions. In this case, it is possible to obtain numerically a more complete picture for the 

stress-strain state of the cylindrical body under consideration, than this can be done in the 

transition to one-dimensional elastic models. The coefficients of the averaged system of 

elasticity theory will depend on the slow variable which is the distance to the axis of the 

cylinder. 

2. Problem specification and decision  

2.1. The first approach 

Consider the system of equilibrium equations of the theory of elasticity [1] in Cartesian 

coordinates 1 2 3x ,x ,x   
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, (1)  

specified in a three-dimensional hollow cylinder (pipe) 

 2 2 2

0 1 2 3 (0 ]P r x x R , x ;z     ,  

 ( 1 2 3i, j , , ). The dependence of the matrices 
i jA ( t ) on the scalar variable t is assumed 

to be a periodic, 
1 2( )x ,x  is the smooth function, vector u  is the displacement vector, 

f  is the vector of mass forces,   is the small parameter, (0 1);  . The case of a layered 

cylinder with a periodic layer structure corresponds to the function 
2 2

1 2x x   . Further, 

we will denote as 
k  the derivative of the function   with respect to the variable 

kx (k =1, 

2, 3), and also  1 2 3y x ,x ,x . 

We will define matrices  

1
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l k

t t
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 
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  



      
       
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is is t
B ( t , y ) B ,y



 
  

 
1

kl kl ps is

j l k p

t t t t
( y )A ( y ) ( y )A ( y )A A   

   



        
         

        
.                       (4) 

In accordance with Theorem 7.13 [1], the set of matrices
i sÂ  describing the “averaged” or 

“effective” properties of an elastic cylindrical body P is given by the formulas  

1
0i s i s i sÂ B B B B ,

 

   (5) 

where 
iB



 is the matrix conjugate to 
iB , and f  means the period average of the 

function periodic in the variable t: 
0

1
f f ( t )dt




  ,  is the period value. 

It is obvious that with a given periodic configuration of the layers and given elastic 

characteristics of each of the materials included in the “winding”, all the coefficients of the 

matrices 
i sÂ  can be calculated explicitly. The corresponding stress-strain state of the 

cylinder can be calculated as a solution of the following system 

i s

i s

û
Â f ( x )

x x

  
 

  
 (6) 

with the corresponding boundary conditions at the ends and the lateral surface of the 

cylinder P. 
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For our case of a circular section of a pipe, the coefficients of the matrices will only depend 

on the “slow” radial variable 
2 2

1 2r x x   and on 
1 2x ,x . This arises due to the 

dependence of matrix coefficients on the derivatives 
k  in the formulas (2 - 4). The actual 

calculation of the stress-strain state of a “homogenized” cylinder can be done using, for 

example, by finite element method, which drastically reduces the amount of computation 

compared to the amount of computation needed to solve the original problem, which 

requires finite elements that are significantly smaller than width of each layer. In this case, 

we deal with calculations of the elastic deformed state of a three-dimensional body. 

2.2. The second approach 

Suppose that the thickness of an elastic cylindrical body (pipe) tends to zero, the layers do 

not have a periodic structure, but the “winding” has radial symmetry, that is, the 

coefficients of the matrices 
ijA  have the form 

r
F



 
 
 

, where 
2 2

1 2r x x  , 0  . 

Using the results of [9], we can approximately replace this “thin” elastic body with a one-

dimensional rod, the stress-strain state of which is described by functions of only one 

spatial variable 
3x  , and the “effective” equation is a rod (beam) equation that can be 

solved explicitly. To determine the characteristics of the Young's modulus and flexural 

rigidity, it is necessary, according to [9], to solve "auxiliary" problems for the functions 

1 2 3 4N ,N ,N ,N : 

1

1

ij i

i j i

A ( ) N A ( ), Q  
  
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1

1
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j
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
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
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2 1 3

ij i j

i j i i
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A ( ) A ( )N ( ) A ( ) ( ) A N h , Q     
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and 

 1 1 1134
3 2 4
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3

k j k

k k

j

N
n A ( ) n A N







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
.  

Here B be a 1-periodic in the direction 
1x  set in three-dimensional space, and domain Q is 

 10 1Q B :     ,  1 2 3, ,    , the symbol   stands for the lateral boundary 

of  Q:  10 1B :      . 

Let a layered tube has along its radius pairs of alternating homogeneous layers of two 

elastic isotropic materials (Fig.1). The problem in this case can be reduced to systems of 

ordinary differential equations by introducing a cylindrical coordinate system ( ; ; )r z  and 

solved explicitly. 

 

 
 

Fig. 1. The cross section of the layered pipe. 

For such a problem Lame equations are [14]: 

2
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1 1 1 1
2 2 2r z z r z r

r z

u u ( ru )( ru ) u u u u u
; ; ;

r r r z r z z r r r
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r

z

u

u u

u


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  is  the displacement vector, ,  are Lame parameters, 

r

z

f

f f

f



 
 

  
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means the vector of mass forces. As is easy to see, components of the vector f  depend 

only on the radial variable r. Then using the next formulas [9] 

1 1
1 1

11
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
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 , (8) 
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 , (9) 
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   

  
 , (10) 

1 3
3 1 2

33

1 j

i

Q

N
ĉ A ( ) ( ) N ( ) d

|Q|
    



  
   

  
 , (11) 

we can also explicitly obtain the elastic characteristics of an “effective” rod. In (8)-(11) the 

symbol E stands for the unit matrix, and |Q|  stands for the volume of Q.   

Then we can choose the function that determines the structure of the “winding” in 

order to get the stiffness characteristics as close as possible to the desired ones with fixed 

mass fractions of the materials used. 

3. Conclusion  

The approaches proposed in this paper propose to obtain in explicit analytical form the 

solution of the problem of loading a non-uniform pipe made of laminated material, 

provided that the elastic properties of the material depend only on the distance from the 

center of the section of the pipe. It is possible to obtain the elements of 
2h  and 

3h  matrices 

explicitly and they characterize the effective modulus of the pipe under tension, torsion, and 

bending. A similar approach can be applied in the future to study the creeping properties of 

a pipe made of composite materials. In fact, using the Laplace transform, we can reduce the 

problem of determining creeping deformations under various long-term pipe loads to the 

problem considered in this article. In this case, after the Laplace transform, we obtain the 

problem of elastic equilibrium with coefficients depending on the complex parameter. The 

solution of such a task will in fact be no different from what is proposed in this work. Then, 

it will be necessary to perform the inverse Laplace transform, which is possible, for 

example, when the initial creep kernels (relaxation) are sums of decreasing exponents. 

Inverse Laplace transform for such exponential kernels can be made explicit. 
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