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Abstract. The results of the evaluation of the reliability of reinforced 

concrete beams lying on an elastic foundation are presented. The load on 

the beam is considered as a non-stationary random function, the elastic 

properties of the foundation are described as a stationary random function. 

Beam stiffness is considered as a random variable depending on the cubic 

strength of concrete. To solve the beam bending equation on an elastic 

foundation with random properties and a loaded non-stationary random 

load, the small parameter method and the method of spectral 

representations are used. The obtained probability characteristics of the 

probability density distribution of bending moments allow us to find the 

probability of failure of a reinforced concrete beam on an elastic 
stochastically inhomogeneous foundation. 

By the reliability of the beam e, we mean the probability of nondestructive over a normal 

section of a reinforced concrete beam with random stiffness 𝐵(𝑅) lying on an elastic 

stochastic heterogeneous foundation with a Winkler ratio 𝐶(𝑥) and a random non-

stationary load loaded 𝑞(𝑥): 

                                               𝑒 =  1 – 𝑒𝑝 .                                                                                          (1) 

Destruction of a reinforced concrete beam over a normal section occurs if 𝑀(𝑥) >
 𝑀𝑢𝑙𝑡(𝑅, 𝜎т), where 𝑀𝑢𝑙𝑡(𝑅, 𝜎т) is the random value of the bearing capacity of the beam, 

and 𝑀(𝑥)  is the normally distributed bending moments in characteristic sections beams 

depending on random parameters 𝐵(𝑅), 𝑞(𝑥), 𝐶(𝑥). The probability of failure of a 

reinforced concrete beam in a normal section in this case will be equal to: 

 𝑒𝑝 =  ∭ ∫ 𝑝𝜎т
(𝜎т) 𝑝𝑅(𝑅) 𝑝𝑞(𝑞)𝑝𝐶 (𝐶) 

∞

−∞

[ ∫ 𝑝𝑀(𝑀, 𝑅, 𝑞, 𝐶)𝑑𝑀]

∞

𝑀𝑢𝑙𝑡(𝑅,𝜎т)

𝑑𝜎т𝑑𝑅𝑑𝑞𝑑𝐶,      (2) 

where 𝑝𝑅(𝑅), 𝑝𝜎т
(𝜎т), 𝑝𝑞(𝑞), 𝑝𝐶(𝐶) - probability density functions of cubic concrete 

strength 𝑅 and the yield strength of reinforcement 𝜎т, random non-stationary load 𝑞(𝑥)  and 

random function of coefficient of the foundation (bed ratio) 𝐶(𝑥); 

          𝑝𝑀(𝑀, 𝑅, 𝑞, 𝐶) - probability density function of bending moments in the beam. 
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All random parameters are accepted distributed according to the normal Gaussian  

distribution. 

Issues related to the evaluation of the reliability of reinforced concrete structures were 

considered in [1-6]. 

In [7] the parameters of the distribution of deflections and bending moments in a 

reinforced concrete beam lying on an elastic foundation were constructed. In this case, the 

load on the beam was considered as a stationary random function, and the elastic properties 

of the foundation were described by the Winkler model, which was also considered as a 

stationary random function.  

In the practice of designing foundation structures, the task of bending a reinforced 

concrete foundation beam under the action of a non-stationary load, which is a function of 

the coordinate, is quite often encountered. 

The average values of the random Winkler coefficient of the foundation, the external 

load and deflections of the beam are denoted respectively by < 𝐶 >, < 𝑞(𝑥) >, < 𝑤(𝑥) > 

and the correlation functions of these parameters are denoted as 𝐾𝐶(𝑥 − 𝑥′), 𝐾𝑞(𝑥, 𝑥′), 

𝐾𝑤(𝑥, 𝑥′). Suppose also that the cube strength of concrete 𝑅 has received a random 

implementation, which corresponds to the flexural rigidity of the beam 𝐵0. 

The equation of the bend of a bar loaded with an arbitrary load and lying on an elastic 

foundation with Winkler coefficient has the well-known form: 

                                            𝐵0 

𝑑4𝑤(𝑥)

𝑑𝑥4
+ 𝐶(𝑥) ∙ 𝑤(𝑥) = 𝑞(𝑥).                                                    (3) 

To solve equation (3), we will use the small parameter method in the form, which was 

done in [7]. 

We represent the function of the deflection of the beam 𝑤(𝑥), as well as the function of 

repelling the foundation 𝐶(𝑥)and the load  𝑞(𝑥) in the form: 

                                                𝑞(𝑥) = < 𝑞(𝑥) >  + 𝜗 ∙  𝑞1(𝑥);                                                     (4) 

                                                𝐶(𝑥) = < 𝐶 >  + 𝜗 ∙ 𝐶1(𝑥);                                                           (5) 

                     𝑤(𝑥) = < 𝑤(𝑥) +  𝜗 ∙ 𝑤1(𝑥) + 𝜗2 ∙ 𝑤2 (𝑥) + ⋯ = ∑ 𝜗𝑛

𝑁

𝑛=0

𝑤𝑛(𝑥),                  (6) 

here  𝑛 = 0,1,2, … , 𝑁 → ∞(x); 

𝜗 -  a small parameter that, after all calculations are performed, is equal to 1. 

Substituting expressions (4), (5) and (6) into equation (3) and equating the terms with 

the same degree of small parameter, we turn to the system of differential equations: 

                       𝐵0 (𝑅)
𝑑4 < 𝑤 >

𝑑𝑥4
+< 𝐶 >∙< 𝑤(𝑥) > = < 𝑞(𝑥) >;                                           (7) 

                       𝐵0 (𝑅)
𝑑4𝑤1(𝑥)

𝑑𝑥4
+< 𝐶 >∙ 𝑤1(𝑥) =  𝑞1(𝑥)− < 𝑤(𝑥) >∙ 𝐶1(𝑥);                      (8) 

……………….  

                        𝐵0 (𝑅)
𝑑4𝑤𝑛(𝑥)

𝑑𝑥4
+< 𝐶 >∙ 𝑤𝑛(𝑥) =  − 𝑤𝑛−1(𝑥) ∙ 𝐶1(𝑥).                                   (9) 

We confine ourselves to solving the first two equations (7) and (8) from the above 

system of equations. In them, the functions 𝑤1(x), 𝑞1(x) и 𝐶1(𝑥) are centered random 

functions. Obviously, solving the equation (7) of the above system of equations gives us the 

expectation of the beam deflections. 

To solve equation (8) of the resulting system, we use the method of spectral 

representations. Given the well-known fact that the correlation function and the spectral 

density of a random process make up a pair of Fourier transforms, known as the Wiener-

Khinchin theorem, we will have the following expression for the impedance of equation 

(8): 
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                                            𝐽(𝜔) =  𝐵0 𝜔
4+ < 𝐶 > ,                                                                    (10) 

then the transfer function 𝐻(𝜔) of equation (8) will be: 

                                    𝐻(𝜔) =  
1

𝐽(𝜔)
=  

1

𝐵0 (𝑅)𝜔4+ < 𝐶 >
.                                                 (11) 

The right-hand side of equation (8) can be written as: 

                                     𝛷(𝑥) =  𝑞1(𝑥)− < 𝑤(𝑥) >∙ 𝐶1(𝑥).                                                       (12) 

The generalized spectral density of a nonstationary random function 𝛷(𝑥) is 

represented as follows: 

                                𝑆Ф(𝜔, 𝜔1) = < 𝑤(𝑥) >2 𝑆𝐶(𝜔) + 𝑆𝑞(𝜔, 𝜔1).                                          (13) 

In expression (13), the first term is the spectral density of the base stiffness. The 

correlation function of the Winkler modulus can be taken in the form: 

 𝐾𝑐(𝑥 − 𝑥′) = 𝐷𝑐exp [−𝜐𝑛|𝑥 − 𝑥′|𝑛 {𝑐𝑜𝑠𝑘[𝜑(𝑥 − 𝑥′)] + 

                                               + (
𝜐

𝜑
)

𝑚

 𝑠𝑖𝑛𝑚[𝜑|𝑥 − 𝑥′|]},                                                            (14) 

where 𝐷𝑐  - variance of Winkler coefficient of foundation; 

𝜐 и 𝜑 - coefficients, the method for determining which is given in [8]; 

𝑥 − 𝑥′ - the distance between arbitrary correlated sections of the beam; 

𝑘, 𝑚  - coefficients that can be taken as equal to 0 or 1; 

𝑛 – coefficient taken as equal to 1 or 2, depending on the properties of the 

random base. 

In [12], according to the results of soil testing, it was recommended to take the 

coefficients = 2, k = 1, m = 0, while the experimental and approximate curves shown in 

Fig. 1, as showed a good match. 

 

 
Fig.1. Experimental and approximating correlation functions 

In this case, the spectral density of the Winkler modulus of the foundation will have the 

form of rational functions: 
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                           𝑆𝐶 = 𝐷𝑐  
𝜐2

𝜋
{

1

[(𝜔 − 𝜑)2 + 𝜐4]
+ 

1

[(𝜔 + 𝜑)2 + 𝜐4]
}.                           (15) 

The second term in expression (13) is the spectral density of the load, which is 

determined by the generalized Wiener-Khinchin transform [9]: 

                            𝑆𝑞(𝜔, 𝜔1) =  
1

4 𝜋2
∬ 𝐾𝑞

∞

−∞

(𝑥, 𝑥′) 𝑒−𝑖(𝜔𝑥−𝜔1𝑥′ )𝑑𝑥𝑑𝑥′ .                                (16) 

Applying the inverse generalized Wiener-Khinchin transform [10, 11] with the 

expression for the impedance (10) of equation (8), we obtain the correlation function of the 

beam deflections: 

𝐾𝑤(𝑥, 𝑥′) = 2 < 𝑤(𝑥) >2 ∫
𝑆𝐶(𝜔)cos [(𝑥 − 𝑥′)]𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2

∞

0

+ 

                                                       + ∬
𝑆𝑞(𝜔, 𝜔1)𝑒−𝑖(𝜔𝑥−𝜔1𝑥′ )𝑑𝜔𝑑𝜔1

(𝐵0𝜔1
4+ < 𝐶 >)(𝐵0𝜔4+ < 𝐶 >)

∞

−∞

 .                           (17) 

The correlation function of bending moments as the second derivative of the deflection 

function will be equal to: 

𝐾𝑀(𝑥, 𝑥′) = 2𝐵0
2 < 𝑤(𝑥) >2 ∫

𝜔4𝑆𝐶(𝜔) cos[(𝑥 − 𝑥′)] 𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2
 + 

∞

0

 

                                      +𝐵0
2  ∬

𝜔2𝜔1
2𝑆𝑞(𝜔, 𝜔1)𝑒−𝑖(𝜔𝑥−𝜔1𝑥′ )𝑑𝜔𝑑𝜔1

(𝐵0𝜔1
4+ < 𝐶 >)(𝐵0𝜔4+ < 𝐶 >)

.  

∞

−∞

                             (18) 

For the variance of bending moments, we will have at 𝑥 = 𝑥′: 

𝐷𝑀 (𝑥) =  𝐾𝑀(𝑥, 𝑥) =   2𝐵0
2 < 𝑤(𝑥) >2 ∫

𝜔4𝑆𝐶(𝜔)𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2
+ 

∞

0

   

                                        + 𝐵0
2  ∬

𝜔2𝜔1
2𝑆𝑞(𝜔, 𝜔1)𝑒−𝑖𝑥(𝜔−𝜔1)𝑑𝜔𝑑𝜔1

(𝐵0𝜔1
4+ < 𝐶 >)(𝐵0𝜔4+ < 𝐶 >)

∞

−∞

.                                  (19) 

As expected, the variance of the bending moments turned out to be a function of the x 

coordinate, i.e. output random process is non-stationary. 

Consider special cases of loading the beam. Let the load be specified in a deterministic 

form and is a function of the coordinate x, i.e. when 𝐷𝑞 = 0, in this case the correlation 

function of the beam deflections will be: 

                          𝐾𝑤(𝑥, 𝑥 − 𝑥′) = 2 < 𝑤(𝑥) >2 ∫
𝑆𝐶(𝜔)cos [(𝑥 − 𝑥′)]𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2
,

∞

0

                      (20) 

and the variance of the deflections of the beam will be equal at  𝑥 =  𝑥′: 
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                                 𝐷𝑤(𝑥) = 2 < 𝑤(𝑥) >2 ∫
𝑆𝐶(𝜔)𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2
.

∞

0

                                      (21) 

Thus, despite the fact that the load is a non-random function and Winkler coefficient of 

the foundation is a stationary random function, the result is obtained as a non-stationary 

random function. 

Consider another case where the load is a quasi-stationary random function, in other 

words, we assume that the load expectation is a non-random function of x, and the centered 

random component of the load is a stationary random function, i.e. 

                                              < 𝑞 > = < 𝑞(𝑥) >;   𝐷𝑞 =  const.                                                (22) 

In this case, the correlation function of the beam deflections will take the form: 

𝐾𝑤(𝑥, 𝑥 − 𝑥′) = 2 < 𝑤(𝑥) >2 ∫
𝑆𝐶(𝜔) cos[(𝑥 − 𝑥′)] 𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2
+

∞

0

 

                                                         + ∫
𝑆𝑞(𝜔)cos [(𝑥 − 𝑥′)]𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2
,

∞

0

                                             (23) 

And the variance of the deflections of the beam will take the form: 

            𝐷𝑤 (𝑥) =  2 < 𝑤(𝑥) >2 ∫
𝑆𝐶(𝜔)𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2
+  2 ∫

𝑆𝑞(𝜔)𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2

∞

0

∞

0

.         (24) 

Similarly, the expressions for the correlation function and the variance of bending 

moments in the beam will be written: 

𝐾𝑀(𝑥, 𝑥 − 𝑥′) = 2𝐵0
2 < 𝑤(𝑥) >2 ∫

𝜔4𝑆𝐶(𝜔) cos[(𝑥 − 𝑥′)] 𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2
+

∞

0

 

                                                   + 𝐵0
2  ∫

𝜔4𝑆𝑞(𝜔) cos[(𝑥 − 𝑥′)] 𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2

∞

0

;                                     (25) 

𝐷𝑀 (𝑥) =  𝐾𝑀(𝑥, 𝑥) = 2𝐵0
2 < 𝑤(𝑥) >2∙ 

                                ∙ ∫
𝜔4𝑆𝐶(𝜔)𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2
+  2𝐵0

2  ∫
𝜔4𝑆𝑞(𝜔)𝑑𝜔

|𝐵0𝜔4+ < 𝐶 > |2

∞

0

∞

0

 .                      (26) 

The results obtained are used for the case of loading an infinitely long reinforced 

concrete beam with a number of concentrated loads 𝑃𝑘 with steps 𝑥𝑘 and expected values 

< 𝑃 >𝑘. The expected value of the deflections of the beam, obtained from equation (7) can 

be written in a known form: 

     < 𝑤(𝑥) > =  
1

8 𝛽3 𝐵0

{∑ < 𝑃 >𝑘 𝑒−𝛽|𝑥−𝑥𝑘|

∞

𝑘=0

[𝑐𝑜𝑠𝛽(𝑥 − 𝑥𝑘)  + 𝑠𝑖𝑛𝛽 |𝑥 − 𝑥𝑘|]},      (27) 

where 𝛽 =  √< 𝐶 > 4 𝐵0⁄4
; 
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𝑙 - distance between concentrated loads. 

The expected value of bending moments is obtained by differentiating twice (27) with 

respect x: 

            < 𝑀(𝑥) > =  
1

4 𝛽 
{∑ < 𝑃 >𝑘 𝑒−𝛽|𝑥−𝑥𝑘|

∞

𝑘=0

[𝑐𝑜𝑠𝛽(𝑥 − 𝑥𝑘) − sin 𝛽|𝑥 − 𝑥𝑘|]}.      (28) 

Now we can construct the probability density function of bending moments, given that 

it was taken by us normal distribution and, thus, is completely determined by the expected 

value and variance: 

                                     𝑝𝑀(𝑀) =  
1

√2𝜋𝐷𝑀(𝑥)
 exp {−

[𝑀 −< 𝑀(𝑥) >2]

2𝐷𝑀(𝑥)
} .                           (29) 

Substituting the expression for the probability distribution density of bending moments 

(29) into the expression for the probability of failure of a reinforced concrete beam over a 

normal cross section (2) and considering that all the above calculations were made for a 

concrete implementation of the concrete cube strength 𝑅, which is a random variable with a 

Gaussian distribution 𝑝𝑅(𝑅) with parameters: expectation < 𝑅 > and variance 𝐷𝑅 and on 

which the beam stiffness and the probability characteristics of bending moments depend, 

find the probability of jelly destruction reinforced concrete beams of normal cross section. 
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