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Abstract. Based on the experience of domestic and foreign researchers, it is known that there are various mathematical 
models, software systems, and optimization methods used to solve the set tasks for assessing the resource adequacy of 
electric power systems (EPS). However, the continuous development of EPS leads to the complication and integration of 
systems against the background of which it becomes necessary to take into account an increasing number of its elements 
and parameters in one task. Thus, for more effective (in terms of speed and accuracy) solutions of modified models, it is 
required to analyze and search the most appropriate set of optimization methods. In this connection, the purpose of this 
study is to analyze the applicability and the effectiveness of applying the method of differential evolution and gradient 
optimization methods for the model of minimizing the power deficit, which should be also compared. The article considers 
the analysis of the results of the work that optimization methods, studies were conducted on a test isolated EPS, with 
various tuning parameters. As a result, it was confirmed that these methods could be used to solve the problem. From the 
point of view of accuracy and resources expended on calculations, the most efficient among the implemented methods was 
the method of differential evolution, which was confirmed by numerical experiments on the small systems. 
Keywords: energy system, resource adequacy, power shortage, optimization methods, heuristic methods. 

 

1 Introduction 
Today's electricity consumers place high demands on 
ensuring the reliability of the electricity supply. This is 
due to the cost of a power failure with economic damage 
and situations dangerous to life and health of people that 
ensue. Interruption of electric power supply to consumers 
is due to failures of electric power system (EPS) 
equipment. In order to minimize the number of electricity 
constraints for consumers, it is necessary to implement a 
set of technical and organizational measures to improve 
the reliability of the EPS in advance. One of the main 
means of ensuring the reliability of the EPS is the early 
planning of the development of the system itself and the 
redundancy of its elements. Since maintaining the 
redundancy of generating capacities and the grid part of 
the EPS are costly measures, the justification of the 
redundancy of all types requires a qualified assessment. 
For this purpose, the resource adequacy of prospective 
EPS schemes is assessed. The result of the assessment is 
reliability indicators that lend themselves to an economic 
interpretation.  

One of the stages of the resource adequacy assessment 
when applying the Monte Carlo method [1] is to 
determine the power shortages of possible states of the 
EPS. The basis for computing power shortages is a 
simulation of the EPS, which includes a mathematical 
model of the EPS, as well as optimization methods to 
obtain the power shortage amount for each of the 
considered states of the system. The quality of the results, 
including the speed and accuracy of the calculation, the 

ability to solve problems with an increasing number of 
optimized parameters, depends on the applied 
optimization method and the correctness of the 
mathematical model. The statement of the problem of 
minimizing the power shortage can be presented both in a 
linear and nonlinear form [2]. The most adequate is the 
statement in the nonlinear form, where losses in power 
lines have a quadratic dependence on the transmitted 
power [3].  

In known practices at home and abroad, various 
optimization methods are used to solve this problem, so 
the "Amber" software and computer system (SCS) [4-5] 
makes use of the method of internal points, the "ORION-
M" SCS [6] employs a dual simplex method. At present, 
in the USA several different software and computer  
systems are adopted, namely: GE MARS [7], GridView 
[8], MARELI (PROMOD IV) [9], SAM (Supply 
Adequacy Model) [10], N-Area Reliability Program 
(NARP) [11], as well as PLEXOS [12] are all 
commercially available, closed projects (models and 
methods are not disclosed). In European countries, they 
use the RTE Antares Simulator open-source SCS with 
several customizable linear mathematical models and 
optimization methods developed by RTE. The employed 
methods are characterized by the accuracy and speed of 
the power shortage calculation. 

At present, in engineering applications, heuristic 
methods are increasingly used to solve optimization 
problems, and one of them is the method of differential 
evolution [13-14]. The method of differential evolution is 
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used to find the global extremum of non-differentiable, 
non-linear, multi-modal (possibly having a large number 
of local extrema) functions of many variables. At present, 
there are 5 efficient modifications of the method available 
but besides that, a great increase in the method's 
performance can be achieved by adopting the technology 
of parallel and vector calculations.  
 As it is known, heuristic methods often have low 
performance in comparison to direct optimization 
methods, because they mainly use the stochastic approach 
and more evaluations of the objective function of each 
formed solution. Applicability and efficiency of the 
method often depend on the problem being solved; this 
article covers the method of differential evolution in its 
original form, and its comparative analysis together with 
the method of conjugate gradients with respect to the 
problem of minimization of the power shortage is carried 
out.  

  
2 Problem statement 
 
The problem of minimizing the power shortage is 
formulated as follows: to determine the optimal flow 
distribution in an EPS for known values of operable 
generating capacities, required levels of consumers' loads, 
transmission capacities of EPS connections and power 
loss coefficients in EPS connections [1], [4-5]. There are 
several types of models for minimizing the power 
shortage, and this paper will apply a model with non-
linear balance constraints, which takes into account the 
quadratic power losses. Mathematically, the problem is 
formulated as follows: 

∑(𝑦̅𝑖 − 𝑦𝑖) → min
𝑦

𝑛

𝑖=1

, (1) 

when the balance constraints are respected: 

𝑥𝑖 − 𝑦𝑖 + ∑(1 − 𝑎𝑗𝑖𝑧𝑗𝑖)𝑧𝑗𝑖 −

𝑛

𝑗=1

∑𝑧𝑖𝑗 ≥ 0

𝑛

𝑗=1

,

𝑖 = 1, … , 𝑛 . 

(2) 

As well as constraints on optimized variables: 
0 ≤ 𝑦𝑖 ≤ 𝑦̅𝑖 , 𝑖 = 1, … , 𝑛 , (3) 

0 ≤ 𝑥𝑖 ≤ 𝑥̅𝑖 , 𝑖 = 1, … , 𝑛 , (4) 

0 ≤ 𝑧𝑖𝑗 ≤ 𝑧𝑖̅𝑗 , 𝑖 = 1, … , 𝑛, 𝑗 = 1,… , 𝑛, 𝑖 ≠ 𝑗 , (5) 

𝑧𝑗𝑖 ∗ 𝑧𝑖𝑗 = 0, 𝑖 = 1,… , 𝑛, 𝑗 = 1,… , 𝑛, (6) 

where: x_i  - power used in zone i (MW), ( x) ̅_i  - 

available power in zone i (MW), y_i  - the load served in 

zone i (MW), y ̅_i  - the amount of load in zone i (MW), 
z_ij - power flow from zone i to zone  j (MW), z ̅_ij - 
bandwidth of the power transmission line between nodes 
i and   j (MW), a_ji - specified positive coefficients of 
specific power losses during its transfer from zone j to 
zone i, j≠i, i=1,…,n, j=1,…,n. 
 
3 Minimizing power shortage 
 
Since model (1-6) is a non-linear programming problem, 
one can use various methods of conditional and 

unconditional optimization to solve it. However, this 
problem cannot be solved by standard methods of 
unconditional optimization due to various constraints that 
are of the type of equations and inequalities, for this 
purpose it is necessary to transform the objective function 
and all constraints into those of the single objective 
function type or apply optimization methods, where these 
constraints act as parameters of the optimization method. 
In the present studies, the penalty function method is 
applied to the transformation of a conditional 
optimization problem to an unconditional one.  

The penalty function method can be applied to 
optimization problems with various types of constraints. 
The method enables us to transform an initial problem 
with constraints into a problem, the solution of which can 
be obtained by methods of unconditional optimization. 
Such transformation allows not only to use various 
methods of unconditional optimization but also to 
increase the accuracy of calculations given the correct 
selection of setup parameters. The main changes are made 
to the objective function that has constraints added to it in 
the form of penalty functions. Thus, changes in the system 
can result in triggering the penalty function, the value of 
which will begin to increase dramatically. In this case, the 
response to the penalty will be regulated by the 
optimization method and, ultimately, the function will be 
directed to the desired solution. 

The studies of the power shortage search that is 
efficient in terms of time and effort were conducted within 
the framework of the following sets of methods: a set of 
methods of penalty functions and the method of conjugate 
gradients with the Fletcher-Reeves coefficient, where the 
step length value is calculated as the Armijo rule, as well 
as a set of methods of penalty functions and differential 
evolution. The complete study included a larger set of 
methods that were also implemented programmatically, 
but due to the inefficiency of some of the methods, they 
passed only the first stage of the studies with their results 
presented in the part of this article that deals with 
experimental studies. The complete list of implemented 
methods included: the gradient descent method, steepest 
descent method (with and without step normalization), 
conjugate gradient method (the variants that come with 
Fletcher-Reeves and Polak–Ribière coefficients) and 

differential evolution method. The following algorithms 
have been implemented as one-dimensional optimization 
and line search methods to calculate the step length value 
in the steepest descent method and conjugate gradient 
method: 2 different algorithms of the Golden-section 
method, the combined Brent's method, the Powell's 
method, methods based on the Armijo rule conditions, the 
strong Wolfe conditions, the Armijo–Goldstein 
conditions, the parabolic method. Due to the instability of 
the obtained results, most of the above described one-
dimensional optimization methods were not used. The 
main method to be tested was the line search by the 
Armijo rule. 

 
3.1 Algorithm of the employed conjugate 
gradient method 
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The conjugate gradient method is an iterative numerical 
method (of the first order) for solving optimization 
problems, which allows us to determine the extremum 
(minimum or maximum) of the objective function [15-
17]. The conjugate gradient method is a further 
development of the fastest descent method, which 
combines two concepts: the gradient of the objective 
function and the conjugate direction of vectors. In general, 
the process of finding the minimum of a function is an 
iterative procedure, the algorithm of which can be 
described by the following set of steps: 

Step 1: Analytical expressions (in their symbolic 
form) are defined to calculate the gradient of function 
∇f(x_1,x_2,…,x_n ) using formula (7) 

∇𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) =

[
 
 
 
 
 

𝜕𝑓

𝜕𝑥1
𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

𝜕𝑓

𝜕𝑥2
𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)

…
𝜕𝑓

𝜕𝑥𝑛
𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)]

 
 
 
 
 

 ; (7) 

Step 2: The initial approximation is set 𝑋 =
{𝑥1, … , 𝑥𝑛}  

Then the iterative process is performed. 
Step 3: The necessity to restart the algorithmic 

procedure for zeroing the last direction of search is 
determined. As a result of the restart, the search is carried 
out anew in the direction of the steepest descent. 

Step 4: The coordinates of unit vector 
 𝑆𝑘(𝑥1, 𝑥2, … , 𝑥𝑛)  are calculated using the formula 
obtained in Step 1, and the coordinates of the new point 
are determined when moving in the direction of the unit 
vector as a function of the calculation step. 

calculation of the weight coefficient and unit vector of 
conjugate directions at the current calculation step (the 
Fletcher-Reeves formula): 

- for the first step of the calculation (𝑘 = 0), the 
weighting coefficient is not calculated (the same applies 
to the case of the algorithm restart), and the unit vector of 
the conjugate directions is determined as follows: 

𝑃0 = ∇𝑓(𝑋0), (8) 

- for the following calculation steps (k=1,2,…), the 

weighting coefficient and unit vector of the conjugate 
directions are calculated on the basis of the following 
ratios: 

𝛽𝑘 =

∑ (
𝜕𝑓(𝑥1,𝑥2,…,𝑥𝑛)

𝜕𝑥𝑖
)

𝑘

2
𝑛
𝑖=1

∑ (
𝜕𝑓(𝑥1,𝑥2,…,𝑥𝑛)

𝜕𝑥𝑖
)

𝑘−1

2
𝑛
𝑖=1

, (9) 

𝑃0 = ∇𝑓(𝑋𝑘) + 𝛽𝑘 ∙ 𝑃𝑘−1. (10) 
In this case, the coefficient calculated using the 

Fletcher-Reeves formula is presented as a formula below 
formula (9). 

Step 5: we determine the calculation step length based 
on the condition of the extremum search for the following 
function 𝐹 = {𝑥𝑘 ± 𝜆 ∙ 𝑃𝑘(𝑥𝑘)} (the solution of the one-
dimensional optimization problem). 𝜆𝑘 ⟹ 𝑓{𝑥𝑘 ± 𝜆 ∙
𝑃𝑘(𝑥𝑘)} → 𝑒𝑥𝑡𝑟 

Step 6: New values of the function arguments are 
defined after the k-th step of the calculation: 

𝑋𝑘+1 = 𝑋𝑘 ± 𝜆𝑘 ∙ 𝑃𝑘, (11) 

where the "+" sign is used to find the maximum of a 
function and the "-" sign is used to find the minimum of a 
function; 

Step 7: Checking the stopping criteria of the iterative 
process. The calculational process ends when the point at 
which the gradient estimate is zero (response function 
coefficients become insignificant) is reached. Otherwise, 
there is a return to Step 3 and the iterative calculation 
continues. 

To find the step length value, one has to solve the 
problem using one-dimensional optimization methods.  
However, in practice, a complete solution of the problem 
is either not achieved due to the complexity of the 
function or it takes a large amount of time and internal 
iterations to find a solution. A different approach can be 
used to reduce the number of operations: the values of the 
calculation step length are selected so that they meet the 
condition presented below. 

The condition (the Armijo rule) is an adaptive method 
of searching for the value of the calculation step length, 
which indicates that function 𝑓{𝑥𝑘 ± 𝜆 ∙ 𝑔(𝑋𝑘)} should 
not exceed the value of some decreasing linear function 
equal to  𝑓(𝑋𝑘) at the zero point: 

𝑓{𝑥𝑘 ± 𝜆 ∙ 𝑔(𝑥𝑘)} ≪ 𝑓(𝑋𝑘) ± 𝜎 ∙ 𝜆 ∙
∇𝑓𝑘 ∙ 𝑔(𝑋𝑘), 

(12) 

where coefficient σ∈(0,1) and the calculation step 
length λ  are determined iteratively by multiplying the 
initial step length λ_0   by  coefficient β∈(0,1)until the 
condition is met.  

The algorithm for determining the optimization 
problem calculation step length as per the Armijo rule can 
be represented by the following procedure: 

Step 1. Set coefficient σ within the range from 0 to 1 

and the initial step length valueλ_0. 
Search procedure (verifying that the the Armijo rule 

condition is respected)  
Step 2. If the Armijo rule condition  is not met, then it 

is necessary to adjust the calculation step length  λ_k= λ_0  

∙β^k, where variable β can take any value from 0 to 1. By 

default, variable β is assigned a value of 0.5, and k is the 

current iteration number of the search.  
Step 3. If the Armicho rule condition is met, then the 

calculation step length can be assumed to be λ=λ_k and 

the search procedure is completed.  
This rule requires a single calculation of the gradient, 

after which a small number of iterations are spent on 
selecting the appropriate step length. Each of these nested 
iterations, in turn, requires the value of the objective 
function to be calculated without a gradient, i.e. the tests 
performed are relatively lightweight. It should be noted 
that this condition is satisfied for all sufficiently small λ.  

It should be noted that in the course of the studies the 
corrective values were selected independently and were 
determined as β=0.85, with coefficient σ= 10e-4,, under 
the conditions of experiments, the number of iterations 
spent on the search did not exceed 14, and in general, this 
rule had a high rate of convergence and also provided 
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sufficient accuracy of the calculation step length for 
optimization methods. 

 
3.2 The algorithm of the adopted method of 
differential evolution 

 
Differential evolution is a method of multi-dimensional 
mathematical optimization that belongs to the class of 
stochastic optimization algorithms and uses some of the 
ideas of genetic algorithms but does not require working 
with variables in the binary code [18-20].  

This method requires only the possibility to calculate 
the values of the objective functions, but not those of its 
derivatives, so it is a direct "method". Differential 
evolution is intended to find a global minimum (or 
maximum) of non-differentiable, non-linear, multi-modal 
(a large number of local extrema) functions of many 
variables. The method is easy to implement and use (it 
contains few control parameters that require their 
selection) and can be parallelized.  

The algorithm of the method of differential evolution 
can be represented as follows: 

 Step 1. Initialization of the population: 
 a) form N vectors with random values within the 

upper and lower constraints on the variables: 𝒙𝒊, 𝒚𝒊, 𝒛𝒊𝒋 
formulas (3-5); 

b) set a constraint on the number of generations 
c) calculate the values of the objective function for 

vectors; 
A cycle through all vectors of the population. 

Step 2. A mutation: 
  a) select the objective vector (each vector from the 

population, for example, R1); 
  b) select 3 different vectors (R2, R3, R4) at random; 
  c) set the mutation scale factor F = [0, 1]; 
  d) calculate a new "mutant vector" MV = R2 + F * 

(R3 - R4); 
Step 3. Cross-breeding: 
  a) set the mutation probability coefficient CR = [0, 

1]; 
  b) form a vector of random numbers P  ∈[0, 1] with 

the number of dimensions equal to that of R1  
  c) form a "child vector" CH, the ordinal number in P 

is greater than CR, the gene from is inherited from R1 or, 
otherwise, MV. 

  d) evaluate the objective function for CH vector 
values; 

Step 4. Selection: 
  (a) Compare vectors R1 and CH; 
  b) introduce a vector with a lower value of the 

objective function into the new population.  
Go to Step 2 as part of the cycle. 

Step 5.  Check whether the limit on the number of 
generations has been reached. 

 

4 Experimental studies of optimization 
methods to solve the problem of power 
shortage minimization 
 

Within the scope of the studies and the software 
implementation of algorithms and mathematical models a 
personal computer with the suite of software products and 
technical specifications indicated in Table 1 was used.  

 
Table 1 Technical and software specifications 

CPU  Intel(R) Core i7-8700K @ 
3.70GHz, boost 4.50GHz, 6 
physical cores, Hyper-Threading 

RAM DDR4 16.0 GB, 15/15/15/36, 2133 
MHz 

OS Windows [Version 10.0.17134.765] 
Delelopment 
environment 

CLion 2018.3.4 [Build #CL-
183.5429.37, built on February 1, 
2019] 

Build 
environment 

MinGW w64 6.0 [x86_64-8.1.0-
posix-seh-rt_v6-rev0] 

Compiler GCC [version 8.1.0] [C++] 
Programming 
Language 

C++ [17] 

 
At the first stage of the studies, the correctness of the 

implementation of gradient methods and the method of 
differential evolution was tested. For this purpose, widely 
known special functions with known minimum values 
were used. First of all, the testing was carried out on the 
Rosenbrock function [21], a non-convex function used to 
evaluate the performance of optimization algorithms 
proposed by Howard Rosenbrock in 1960. The 
Rosenbrock function for two variables is defined as: 

𝑓(𝑥, 𝑦) = (1 − 𝑥)2 + 100(𝑦 − 𝑥2)2, (13) 

It has a global minimum at point (𝑥, 𝑦)= ( 1 , 1 ), where 
 𝑓(𝑥, 𝑦) = 0. 

Launching each of the software implemented methods 
has shown that all of them find a global minimum when 
setting different levels of accuracy. Thus, the following 
accuracy parameters were used for gradient descent 
methods: 1e-6.  

 
Table 2. Comparative characteristics of methods 

Method 

Result The 
number of 
function 

evaluations 
(𝑥, 𝑦) 𝑓(𝑥, 𝑦) 

Gradient 
descent 

(0.999999, 
0.999999) 

1e-11 Gradient 
descent 

Steepest descent (1, 1) 0 Steepest 
descent 

Conjugate 
gradient 

(1, 1) 0 Conjugate 
gradient 

Differential 
evolution 

(1, 1) 0 Differential 
evolution 

   
As can be seen from the results, the required accuracy 

of calculations is achieved, the result is unambiguous. The 
comparison of the number of iterations cannot provide an 
unbiased assessment of the amount of performed 
calculations, because the method of the steepest descent 
and that of conjugate gradients, in addition to the basic 
iterations, perform a one-dimensional step length search, 
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which also includes the evaluation of the function, while 
the method of differential evolution on the first iteration 
forms a population of 20 random vectors, after which 
there is a change of generations reaching up to 300 of 
them. Thus, the most unbiased way to compare these 
methods is to estimate the number of calls to the 
calculations of the objective function value. However, one 
should also take into account that besides evaluating the 
function, gradient methods also calculate the gradient 
(that of the derivative of each variable), which also makes 
the calculations heavier and greatly affects the speed of 
the algorithms. At the same time, the method of 
differential evolution calculates only the values of the 
objective function. 

At the second stage of the study, the efficiency of the 
software implemented methods was assessed as applied to 
the problem of minimizing the power shortage. The 
studies were conducted based on mathematical model (1-
6). The 3-zone system was chosen as the system to be 
tested test, which is an isolated EPS with the "ring" 
topology (see Figure 1), made up of three zones of 
reliability and three inter-zone links, presented in the 
figure as nodes of the graph and its edges, respectively.  

 
Fig. 1. The diagram of an isolated 3-zone system. 

 
 𝛾 = 10 was chosen as the initial parameter of the 

penalty function method with its subsequent increase up 
to 1,000 with the 10 times increase step. However, as 
evidenced in practice, the change of coefficient 𝛾 with its 
subsequent increase is required only for the conjugate 
gradient method that is gradually approaching the desired 
solution, while in the case of the method of differential 
evolution it is enough to specify the coefficient once to 
obtain the final solution.  

The results of the performance of the conjugate 
gradient method in one of the numerous experiments are 
shown in Table 3.  

 
Table 3The values calculated by the conjugate gradient 

method 
 Constrai

nts 
 Soluti

on  
𝛾
= 10 

Soluti
on   

𝛾
= 100 

Soluti
on   

𝛾
= 1000 

Corre
ct 

soluti
on 

 
𝑥̅1 158 𝑥1 99.5 100.9

7 
100.9
9 101 

𝑥̅2 109 𝑥2 
106.6
8 

107.9 
107.9
8 

108 

𝑥̅3 83 𝑥3 83.11 83 83 83 
𝑦̅1 91 𝑦1 91 91 91 91 
𝑦̅2 98 𝑦2 98 98 98 98 
𝑦̅3 201 𝑦3 93 93 93 93 
𝑧1̅2 10 𝑧12 0,22 0,01 0,01 0 
𝑧2̅1 10 𝑧21 0 0 0 0 
𝑧1̅3 10 𝑧13 8.49 9.96 9.98 9.99 
𝑧3̅1 10 𝑧31 0 0 0 0 
𝑧2̅3 10 𝑧23 8.49 9.96 9.98 9.99 
𝑧3̅2 10 𝑧32 0 0 0 0 

  𝑎 
0,000
05 

0,000
05 

0,000
05 

0,000
05 

As can be seen from Table 3, the solution matches the 
required correct values within the permissible error of 1% 
that occurs due to the numerical instability of the penalty 
function method and the error of representation of real 
numbers in the computer memory.  

The following values were used as setup parameters 
for the method of conjugate gradients: the accuracy of the 
calculations: 10e - 6, the restart point was set at 18 
iterations (chosen experimentally), the maximum number 
of iterations was 50,000. Then, an experiment was carried 
out to calculate the solution to the problem of minimizing 
the power shortage with various starting points. The 
minimum number of method iterations was 1,422; the 
maximum number of method iterations was 6,793; on 
average, 3,776 iterations were required to obtain a proper 
solution, the average number of calls to the evaluation of 
the objective function was 46,332 times, and the average 
gradient was calculated 3,776 times, which corresponds 
to the average number of iterations.   

After that, the method of differential evolution was 
tested with the penalty coefficient 𝛾 = 10 set as setup 
parameters, the number of populations was 96, the 
mutation coefficient 𝐹 = 0.5 (this coefficient was chosen 
experimentally and provides the best results of the 
convergence rate of the method), the coefficient of 
crossover speed was 0.9, and the maximum number of 
generations amounted to 1,500.  

As a result of the application of the method of 
differential evolution, the solution was obtained using 
only one penalty value 𝛾 = 10. The final solution is 
presented in Table 4.  

 
Table 4.The values calculated by the differential 

evolution method 
 Constraints  Solution 

𝛾 = 10 
Correct 
solution 

𝑥̅1 158 𝑥1 100.99 101 
𝑥̅2 109 𝑥2 107.98 108 
𝑥̅3 83 𝑥3 83 83 
𝑦̅1 91 𝑦1 91 91 
𝑦̅2 98 𝑦2 98 98 
𝑦̅3 201 𝑦3 93 93 
𝑧1̅2 10 𝑧12 0 0 
𝑧2̅1 10 𝑧21 0 0 
𝑧1̅3 10 𝑧13 9.98 9.99 
𝑧3̅1 10 𝑧31 0 0 
𝑧2̅3 10 𝑧23 9.99 9.99 
𝑧3̅2 10 𝑧32 0 0 

𝑥1, 𝑦1 

𝑥2, 𝑦2 

𝑥3, 𝑦3 
𝑧13, 𝑧31 

1 

2 

3 

𝑧23, 𝑧32 
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  𝑎 0,00005 0,00005 
As can be seen from Table 4, the solution also matches 

the required correct values within the permissible error of 
1%, which occurred due to the error of representation of 
real numbers in the computer memory and the numerical 
instability of the penalty functions method. The minimum 
number of method iterations was 680, the maximum 
number of method iterations was 1,500, on average 943 
iterations were required to get a "proper" solution, the 
average number of calls to the evaluation of the objective 
function was 56,688 times, but such operations are 
deemed to be lightweight and do not require heavy 
additional calculations.  
5 Conclusion 
The speed and accuracy of solving the problem of 
minimizing the power shortage have an effect on 
obtaining adequate values of the EPS reliability indicators 
and on further solving of the subsequent problems, for 
example, the justification of the EPS redundant generating 
capacity. The problem of minimizing the power shortage 
is non-linear and non-convex, so it is required to apply 
appropriate methods to solve it. The paper treats the issue 
of applicability and efficiency of the solution by methods 
of conjugate gradients and differential evolution. 
Experimental studies have shown that both methods 
enable us to solve the problem with a given accuracy, but 
the effort for solving this problem is different. Since it is 
not sound to compare methods by the number of iterations 
spent on arriving at the solution, because the effort taken 
by iterations of each method varies greatly, it was 
suggested to compare the number of evaluations of the 
objective function. Backed by the analysis of the 
performance of the methods, distinguishing features of the 
method of differential evolution may be highlighted. 
Namely, there is no need to take into account the 
constraints of the maximum and minimum values of the 
level of generation, loads, and bandwidth at the level of 
penalty functions, since these constraints are addressed at 
the level of the method itself. Furthermore, there is no 
need to increase the value of the parameter of the penalty 
with the subsequent calculation, because the method 
works correctly with the value of the penalty equal to 10. 
Despite the fact that the method of differential evolution 
evaluates the objective function 10,356 more times than 
the conjugate gradient method, it is necessary to take into 
account that such calculations are more lightweight, 
because the objective function is free of some of the 
penalties, and there is no need to calculate the function 
gradient at each iteration.  

Thus, the method of differential evolution was 
determined as the most efficient among the implemented 
methods in terms of accuracy and resources spent on 
calculations, which is confirmed by numerical 
experiments performed for small systems. 
The research was carried out under State Assignment 
17.5.3 (reg. no, AAAAA-A17-117030310450-3), with 
the financial support by the Russian Foundation for Basic 
Research within the framework of the scientific project 
No. 18-37-00234, as well as by the UMNIK research 
grant No. 12555GU/2017 dated 16.04.2018. 
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