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Abstract. Medium and long-term weather sequence forecast becomes unreliable beyond two weeks since 
the weather is a chaotic system. Using values of same months for electricity prediction of wind power is the 
usual method. This approach defaults wind power output with annual cycle law. However, the periodic 
pattern can be very complicated in fact with multiple time scales. This paper proposes an approach with 
multi-scale periodic pattern considered. The application of parametric estimation on cumulative distribution 
function avoids the difficulty of predicting the power curve. Meteorological condition is considered to some 
extent via multi-scale periodic pattern explored basing on historical energy data. This work is an exploration 
for medium and long-term wind power forecasting that can well adapt to existing conditions. It has better 
prediction accuracy than the method without multi-scale periodicity considered. 

1 Introduction  
Reliable forecast on mid and long-term generation of 
wind power can be significant for energy balance, 
generation scheduling and maintenance scheduling [1] 
with the penetration of renewable power raising. 

However, medium and long-term power timing 
curves are difficult to obtain under current technical 
conditions. For one thing, Numerical models for 
simulation and prediction of atmospheric flows are 
subject to deterministic chaos and are likely to give 
unrealistic solutions [2]. The theoretical upper limit of 
deterministic forecast for weather sequence is about two 
weeks. After reaching the upper limit of two weeks, the 
error of deterministic weather forecast is almost equal to 
the level of natural variability [3]. For another, statistical 
methods based on historical sequence extrapolation are 
poorly adaptable [4]. 

Above problems considered, the main form of wind 
power forecasting at present for medium and long-term 
scale is to predict the amount of electricity monthly or 
yearly. Probabilistic prediction based on principal 
component analysis and quantile regression is carried out 
in [5]. However, the prediction quality is strongly 
correlated with the accuracy of the weather forecast for 
the next 30 days and so it can be ineffective for areas 
that are lack of weather forecast meeting the 
requirements. Gray model is often used in situations over 
which historical data is insufficient [6], but it cannot 
handle situation with new installed capacity. Another 
common practice is to find the representative wind farm 
of targeted area [7], and then extrapolate the output of 
the representative wind farm. Forecast on representative 

wind farm is used as the result for the region. This 
method is not universally applicable for places with 
complex terrain. 

This paper proposes a forecasting method for 
monthly electricity generation of wind power. The 
approach is based on cumulative distribution function 
(CDF), which avoids the difficulty of predicting the 
power curve. Multi-scale periodic pattern of wind 
resource is taken into account, and so the meteorological 
condition is considered to some extent. 

2 Wavelet analysis for multi-scale 
periodicity  

Wavelet analysis is a powerful tool that can reveal the 
dominant modes of variability. One important feature 
that makes it distinguished is it decomposes a time series 
into time-frequency space, and so it can offer both time-
domain and frequency-domain information. Because of 
that, wavelet analysis has better performance in 
analysing nonstationary time series compared with other 
signal representation approaches, such as Fourier 
transform [8]. Wind power series is typically non-
stationary with different frequencies at various scales [9], 
and thus it is ideal to be analysed by Wavelet transform. 

Continuous wavelet transform is applied in the 
following evaluation in view of its good performance on 
feature extracting [10]. A function that satisfies the 
admissible condition can be the mother wavelet as the 
base of transformation. Admissible condition is given as 
formula (1). 
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The continuous wavelet transform of a signal 
2( ) ( )f t L R  is defined as the convolution of ( )f t  with 

the daughter wavelets , ( )a b t  which are the translated 
and scaled versions of the mother wavelet ( )t . 
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Here, a is scale factor, and b is shift factor. ( )( , )W f a b  is 
also named wavelet coefficient, which indicates the 
correlation between the wavelet and the input array. 
Overline indicates complex conjugate.  

In this paper, Morlet complex wavelet is chosen to be 
the mother wavelet. The real part of the wavelet 
coefficient is convenient for us to study the scale 
variability over the entire time domain [11].  

The wavelet variance Var(a) is the integral of the 
squared norm of the wavelet coefficients in the time 
domain, which indicates the periodic wave energy 
distribution under the different scales. When the scale is 
fixed, the greater the wavelet variance is, the more 
obvious the periodic characteristics are, which means 
that the time series signal has the main period. The 
wavelet variance is as shown in equation (4). 
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3 Electricity generation forecasting 
method based on cumulative 
distribution function 
Restricted by the accuracy of weather forecasting for 
long term, we gave up the common idea to calculate 
generation by the integral of power. We rather choose 
the CDF as the intermediary, and make the computation 
concise and easy to process. The transformation from 
CDF to generation can be expressed as equation (5) 

0

= (1 ( ))
MP

W F x dx −
  (5) 

Here, F(x) represents CDF, and PM is the upper bound of 
power output, that is capacity in this work.  represents 
the time sampling interval. 

Since quantities of wind farms were constructed in 
the recent years, and the old ones are often lack of good 
data storage conditions. This leads to the situation at 
present that parametric estimation is chosen to be the 
method in this paper. Since complex non-parametric 
estimation is hard to be achieved, which is likely to have 

better precision. The scheme for forecast of wind power 
generation is proposed as displayed in Fig.1. 

 
Fig. 1. Overall steps for wind electricity generation. 

3.1 CDF fitting based on Beta distribution  

Beta distribution is applied for our analysis as it leads to 
lower error for CDF fitting in most circumstances 
compared to Weibull distribution and Lognormal 
distribution, both of which are commonly used [12-14]. 
This will be reflected in section 4.2. 

Probability density function (PDF) of beta 
distribution is 

1 1 -1( ; , ) (1 ) ( , )f x x x B    − −= −   (6) 

1
1 1
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Correspondingly, CDF of beta distribution is 
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0
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x
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Maximum Likelihood Estimation is used to obtain 
the value of two parameters of Beta distribution: α and β. 

3.2 Parameter prediction based on periodicity 

Parameter estimation is expected to be done according to 
the multi-scale periodic pattern from existing data. That 
is, several significantly different categories will be 
distinguished based on periodicity, and then typical 
values will then be figured out for predicting. 

Assume that there are m  major periods found, and 

then at least 1 2 ... m
m m mC C C+ + +  classification schemes are 

optional. Kruskal-Wallis nonparametric test (K-W test) 
is used to find the best division, for which the 
differences between categories are most significant. If 
null hypothesis that distribution of different category is 
the same cannot be rejected, it means that the class 
definition method is not reasonable.  

Once categories are settled, the median of parameters 
for each class is defined as the typical value. If no 
effective classification based on periodicity is obtained, 
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then other information, for example, the values of 
previous months will be adopted directly. 

3.3 Evaluation indices 

The difference of empirical CDF obtained from 
historical data and estimated CDF reflects the error of 
forecast. Root mean square error (RMSE) is used to 
quantify the deviation. 

^
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( ( ( ; , ) ( )) )

N
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RMSE F x F x
N

 
=

= −
 (9) 

Here, 
^

( )F x  refers to empirical CDF. 
Relative error (RE) is applied to measure the offset of 

forecasting results for electricity generation. 

1^ ^
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−

= −  (10) 

Therein, 
^

W  represents the actual electricity 
generation. 

4 Case Study 
Case study is designed based on the data of wind farms 
in north Hebei province. Time ranges from 2015 to 2017, 
and the time step is 1 minute. 

4.1 Multi-scale periodic pattern 

Since our goal is to analyze the medium and long-term 
pattern of wind power, which corresponds to monthly or 
even yearly scales, we choose series of monthly wind 
power generation as input. Electricity generation also 
reflects the abundance of wind resources. Contour map 
over the real part of wavelet coefficients is shown in 
Fig.2. 

 
Fig. 2. Contour map based on wind power generation of Hebei. 

In the figure, the horizontal axis represents time in 
the unit of month and the vertical axis represents the 
wavelet scale. If the region of the contour map is filled 
with the warm color, the real part is positive which 
means that the wind resource is abundant, and the wind 
power generation is vast. Opposite conclusion will be 
made if the filling color is cold. 

The wavelet variance of wind farms in Hebei is 
exhibited in Fig.3 to figure out the main periodicity. The 
leading periodic component is 13.54 months, the second-
domain component is 29.54 months, and the third is 
7.385 months. They are reflectively defined as medium, 
long and short period for the following discussion. 

 

Fig. 3. Wavelet variance diagram. 

4.2 CDF fitting 

Distributions that are widely used for wind power are 
tried for each month, including Beta distribution, 
Weibull distribution and Lognormal distribution. RMSE 
for each situation is shown in Fig.4, and illustrates that 
applying Beta distribution has best performance for this 
case. 

 
Fig. 4. RMSE for CDF fitting based on different distributions. 

Table 1. Parameter estimation and RMSE of CDF fitting for 
2015. 

Month 1 2 3 4 5 6 

α 1.981 0.725 2.915 2.068 1.477 0.859 

β 10.672 5.079 13.267 11.101 6.985 5.005 

RMSE 0.067 0.071 0.071 0.054 0.027 0.015 

Month 7 8 9 10 11 12 

α 0.877 0.734 1.002 1.063 0.915 0.968 

β 7.582 7.478 3.194 3.356 6.736 3.992 

RMSE 0.004 0.009 0.083 0.069 0.018 0.043 

Estimation of parameters for Beta distribution and 
RMSE for CDF fitting are given as Table 1(results for 
2015) and Table 2(results for 2016). The maximus 
RMSE is 0.085. It indicates that the method to forecast 
electricity generation using CDF based on Beta 
distribution is feasible. 
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Table 2. Parameter estimation and RMSE of CDF fitting 
for 2016. 

Month 1 2 3 4 5 6 

α 1.609 1.368 1.819 1.452 1.676 0.617 

β 6.056 4.481 5.455 3.880 4.443 3.095 

RMSE 0.029 0.059 0.046 0.074 0.059 0.053 

Month 7 8 9 10 11 12 

α 0.883 0.705 0.772 1.289 2.467 1.284 

β 5.806 8.941 4.762 3.833 4.696 3.946 

RMSE 0.013 0.010 0.015 0.051 0.085 0.045 

4.3 Parameter prediction 

K-W test is applied to different modes, and statistical 
significances are listed in table 3 for parameter   and 
 . Significance level is set as 0.05. Long, medium and 
short period was defined in section 4.1.  

For every period considered, there are two classes, 
one is that the wind resource is abundant, and another is 
not. For example, if “Long-Medium” periods are 
concerned, there are four categories for parameters. The 
first is that wind resource presents abundant for both 
periods, and the second shows scarce characteristic for 
both periods. Other two correspond to the situations that 
wind resource is ample for one period, and necessitous 
for another period. 

Table 3. Significance for different classifications. 

Periods considered for 
classification 

Statistical 
significanc

e for   

Statistical 
significanc

e for   

Long 0.835 0.728 
Medium 0.002 0.321 

Short 0.08 0.448 
Long-Medium 0.01 0.638 
Medium-Short 0.006 0.196 

Long-Short 0.354 0.084 
Long-Medium-Short 0.048 0.116 

Whether takes medium period as the base for 
categories affects the conclusion a lot. When analyzing 
on the Medium-Short mode, we found situation that 
wind resources are in shortage for both periods (defined 
as category1 in Fig.5) has significantly different data 
distribution with others (defined as category2 in Fig.5). 
We then made two categories according to the result, and 
the statistical significance became 0.001, lower than any 
as shown in Table 3. It is what we use in the following 
analysis. The distribution of   for different group is 
displayed in Fig.5. 

α for category 1 is obviously small than category 2. 
We select medians as the typical value for each class, 
which is 0.7527 and 1.4101 separately. 

As we can refer from Table 3, difference is not 
significant between different categories no matter the 
way of defining groups. This indicates that the parameter 
prediction method according to periodic pattern is not 
suitable for β. Hence, we use the average of the last two 
months to be the predicted value for β as the lack of 
quantitative data. 

 

Fig. 5. Distribution of for different category. 

4.4 Wind electricity generation forecast 

Since the category belonging is very important for 
selection of α, forecast on abundance situation for 
medium and short periods should be done firstly. Fig.6 
shows the abundance condition for months of 2015 and 
2016, and it is consistent with Fig.2. The red square 
corresponds to the warm part in Fig.2, and the blue one 
to the cool tone. The duration of stages of abundant and 
dry wind resources shows a strong regularity. Therefore, 
we do random sampling to forecast the mode for the 
future months according to the distribution reflected in 
the historical data. Predicted results are displayed as 
hollow squares. 

 

Fig. 6. Forecast on abundance of wind resources. 
Parameters can be set then for months that generation 

is expected to be predicted. To reflect the preponderance 
with multi-scale periodic pattern concerned for forecast, 
we make the benchmark that parameters are set only 
based on the data of same months in the previous years. 
The absolute values of RE for electricity generation 
forecast for 2017 is demonstrated in Fig.7.  

 

Fig. 7. Forecast error of electricity generation. 
The mean error with multi-scale periodic pattern not 

considered is 0.3226, and the value drops to 0.1958 with 
the method proposed in this paper. However, the error is 
higher than the benchmark in November, the probable 
cause is that power dispatching institution increase the 
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accommodation of wind power to fulfill the promise of 
reducing wind abandon made in the early of the year. 

Error of electricity generation forecast and CDF 
fitting is compared as Fig.8 shows. The larger the error 
of CDF fitting, the higher the absolute value of RE for 
electricity generation. Moreover, the prediction error of 
electricity generation amplifies the error of CDF fitting 
during integral operation. 

 

Fig. 8. Error of electricity generation forecast and CDF fitting. 

5 Discussion and conclusion 
This work provides a forecast method for monthly 
electricity generation of wind power. The method is put 
forward under the condition that no credible weather 
sequence forecast for medium and long term could be 
referred. Multi-scale periodic pattern is in consideration 
to predict the parameters of Beta distribution, which is 
chosen to fit the probability density distribution of wind 
power. The method has better prediction accuracy than 
the method without periodic pattern considered, since the 
mean relative error of electricity generation decrease 
from 0.3226 to 0.1958. 

However, this paper is just a preliminary work for 
medium and long-term wind power forecasting. The 
absolute value of relative error reaches 0.3901 for the 
worst situation, and it is not a satisfying result for 
practice. Further efforts could be made for the following 
points: 
⚫ Use complicated distribution, for example, mixture 

distribution, with accumulated data increasing. 
⚫ More information is deserved to be explored from 

historical data, not only periodicity for wind 
resources. 

⚫ Try to integrate weather forecasting information to 
make prediction for wind electricity generation. 
 

The research is supported by Science and technology project of 
STATE GRID Corporation of China: research on statistical 
rules of wind power generation characteristics and its 
application (SGNXDK00DWJS1800013). 
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