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Abstract. The Emergence of the Ubiquitous Power Internet of Things(UPIoT) facilitates data sharing and 
service expansion for the power system. Based on the architecture of the UPIoT and combined with deep 
learning technology, short-term electrical load forecasting and anomaly correction could be used to improve 
the overall performance. Since short-term electrical loads are non-linear and non-stationary [1] and could be 
easily affected by external interference, traditional load forecasting algorithms cannot recognize the 
correlation between the time sequence thus rendering low prediction accuracy. In this article, a Long Short-
Term Memory (LSTM) based algorithm is proposed to improve the prediction accuracy by utilizing the 
correlation between the hourly load sequence. Then, the real-time forecasting outputs are compared to the 
raw data in order to detect and dynamically repair the anomaly so as to further improve the performance. 
Experiment results show that the proposed approach outputs low Mean Square Error (MSE) of around 0.2 
and could still hold it at around 0.3 with corrected data when the anomaly is detected, which proves the 
accuracy and robustness of the algorithm. 

1 Introduction  

Electrical load forecasting plays an important role in the 
construction of smart grid system. Since the electric load 
forecasting relies on a large amount of historic data, the 
credibility of the time series of original load sequence has 
a great influence on the prediction results of any 
prediction method. Performing real-time anomaly 
correction and load forecasting simultaneously could 
improve the reliability of the raw data thus improving the 
accuracy and stability of the prediction algorithm. 
Therefore, the study of load prediction and anomaly 
repair algorithm is of great significance to improving the 
overall performance of the smart grid.  

In the 1960s, the research into load forecasting was 
gradually leaning to the practical application. Load 
forecasting methods could be mainly categorized into two 
types: traditional load forecasting technology and 
intelligent forecasting technology [2]. Traditional power 
load prediction algorithms include MA, ES and ARIMA 
[3]. Since these algorithms are established on the 
assumption that the observed and the future time series 
are linearly correlated, they are not effective when 
processing time series with significant nonlinear 
characteristics and therefore, have no learning or self-
adaptive abilities. In recent years, the load forecasting 
technology has entered a new era of intelligent prediction 
and an enormous amount of research regarding machine-
learning-based load forecasting has ensued gradually 
matured. For instance, in [4] the authors use a support 

vector machines based regression model coupled with 
empirical mode decomposition to for long-term load 
forecasting. In [5] electricity demand is forecast using a 
kernel based multi-task learning methodologies. In [6], 
the authors used Artificial Neural Network (ANN) 
ensembles to perform the building level load forecasting. 
In [7, 8], Recurrent Neural Network (RNN) and Long 
Short-Term Memory (LSTM) based algorithms are 
proposed and varied to achieve better overall prediction 
results. Though enormous number of approaches have 
been proposed to improve the prediction results, little 
research has been done to diagnose the reliability of the 
training data which could influence the forecasting 
performance to a great extent if an anomaly exists in the 
historical time series. 

This article proposes an approach based on a four 
layer LSTM model for short-term load forecasting and 
anomaly correction. LSTM fully considered the 
correlation of the time series data and perfectly solved the 
“gradient vanishing” problem of the RNN model. In 
addition, by comparing the prediction results with the real 
data, anomalous load data in the historical time series can 
be detected and corrected before the next prediction 
iteration. In this sense, the forecasting system could not 
only provide accurate prediction results, but also warn the 
power enterprise to detect abnormal conditions of power 
load in time which significantly increase the 
practicability of the algorithm. Experiment results show 
that the mean square error(MSE) between the prediction 
and the real data is around 0.2 and has a higher prediction 
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accuracy compared to RNN or other traditional 
algorithms. In addition, when the anomaly is induced, the 
MSE between the prediction results using the repaired 
data and the real data is still around 0.3, which proves the 
robustness and stability of the proposed approach. 

2 An outline of the LSTM 

As the simplest type of neural network, Perceptron was 
developed in the 1950s and 1960s by Frank Rosenblatt 
[9], inspired by earlier work by Warren McCulloch and 
Walter Pitts. Perceptron comprises only one input layer 
and one output layer. Following that, more complex 
models containing multiple hidden layers have merged. 
In this work, we mainly focus on the application of the 
back propagated neural network designed for training 
time series, i.e., the input of a hidden includes the output 
of the previous layer at this moment along with its own 
output at the previous moment. Typical algorithms 
include RNN, LSTM, etc. 

2.1. The RNN architecture  

RNN was first proposed by Jeffrey l. Elman in 1990 [10]. 
Since RNN is more capable of using the information 
from the past to predict the future, it is widely used in 
natural language processing, time series processing, voice 
processing and other time series related fields. A standard 
RNN architecture is shown in Fig.1 where the 
transmission process for RNN is unfolded by time period.  
x( t)  represents the input at time t, o( t)  represents the 
output at time t, and U , V and W denotes the input, 
output at time t  and the weight output at time t –1, 
respectively. Each arrow represents one transformation, 
which means that the arrows are attached with weights. 
As shown in the unfolded architecture of RNN, the 
neurons in between the hidden layer are also connected 
with weights in standard RNN structure which implies 
that the status of a hidden layer at a previous moment 
would affect the status of itself at a later moment as time 
goes on. 

 
Fig. 1. Unfolded RNN architecture 

The data flow of the standard RNN also possesses the 
characteristics of: 1) weight sharing, i.e., the U , V and W  
in the figure share the same value. 2) each input only 
establishes a weighted connection with its own route 
rather than other neurons. Based on the above 
characteristics, the output of RNN at time t  can be 
expressed as: 
  (1) 

  (2) 
where f  ( ·)  is the activation function of the hidden layers, 
generally tanh or sigmoid function. 

Although RNN is able to learn the data correlation in 
time, it suffers from the long-term dependency problem, 
i.e., when the time interval between relevant information 
and the prediction position grows large, the historical 
data cannot be traced due to "gradient vanishing" or 
"gradient exploding", resulting in the loss of learning 
ability . 

2.2 The LSTM architecture  

In order to solve the problems of "gradient vanishing" 
and "gradient exploding" for RNN, Hochreiter & 
Schmidhuber [11] proposed a variant of RNN named as 
LSTM in 1997, which could learn long-term information 
and is widely implemented after improvement and 
promotion. As shown in Fig. 2, LSTM also contains a 
chain structure of recurrent modules. In standard RNN, 
the recurrent module is only composed of a simple 
structure such as a tanh layer. Alternatively, The LSTM 
module is composed of three different structures, namely, 
gated cell where gated means that the cell decides 
whether or not to store or delete information (e.g. if it 
opens the gates or not), based on the importance it 
assigns to the information. The assigning of importance 
happens through weights, which are also learned by the 
algorithm. This simply means that it learns over time 
which information is important and which not. A typical 
LSTM has three different types of gates: input, forget and 
output gate. These gates determine whether or not to let 
new input in (input gate), delete the information because 
it isn’t important (forget gate) or to let it impact the 
output at the current time step (output gate).  

With the evolution of neural networks, more popular 
variants of LSTM were invented such as peephole 
connections [12] and Gated Recurrent Unit (GRU) [13], 
which are widely used in various learning tasks related to 
time series. NOTE that the proposed approach in this 
article is based on the most basic LSTM structure. 

 
Fig. 2. LSTM and RNN Chain Module Structure 

3 Using LSTM for load forecasting and 
anomaly correction 

3.1. Load forecasting  

Electrical load forecasting is a kind of prediction based 
on the historical load data. Normally, before conducting 

o (t ) = softmax(V h (t ) + c)

h (t ) = f (Ux (t ) + W h (t − 1) + b)
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load forecasting, a large amount of historical data should 
be collected. The data should be wisely chosen since the 
more standard and representative the training data, the 
more accurate the predicted value could be obtained. 
After that, the original training data need to be 
normalized and reshaped to accelerate the convergence 
and the fit the model dimension. Then the model would 
be trained with appropriate parameters. After the model 
is trained, the predicted value could be obtained by 
passing the historical load data to the trained LSTM 
model. The complete training process of load forecasting 
using LSTM is shown in Fig. 3. 

 
Fig. 3. The training process of load forecasting using LSTM 

3.2 Anomaly correction 

The anomalous data would affect the prediction results 
negatively since the pattern of the load sequence is 
destroyed and the prediction model could no longer 
recognize the relationship between data. Since LSTM 
model is distinct for its strong robustness, a small amount 
of anomaly will not have a serious impact on the 
predicted results. Therefore, the predicted results can be 
used to identify anomaly and correct it by the prediction 
results. Common anomalous data could be categorized 
into 3 types [14]:  

• Missing data: Mainly due to the malfunction of the 
SCADA system, data in the database appears as null 
values. 

• Deficient data: Mainly due to the line maintenance, 
equipment maintenance or electric meter damage in a 
certain period of time. The load curve increases and 
decreases drastically in a day or a period of time 
compared with the normal load of the adjacent day or the 
planned load of the day.  

• Minimax data: The load exceeds the peak or valley 
value in a day dramatically in a non-peak or non-valley 
moment. 

4 Numerical results 

Experiments are conducted using Keras library in 
python.The dataset is the hourly power consumption in 
Toronto Canada from January to July 2016. After the 
LSTM model is trained, standard dataset is used for 
testing, and the accuracy of the prediction results was 
analyzed in terms of MAPE and MSE. In order to test the 
anomaly correction results for the proposed approach, 
corruption of the standard data (missing values, minimax 
values, etc.) is introduced artificially to perform 

prediction under anomaly situations. The prediction 
results are then compared with the real value at the that 
moment to determine whether the anomaly needs to be 
fixed. Finally, the prediction results before and after 
correction are analysed and a conclusion is drawn. The 
complete diagram of the proposed approach is shown in 
Fig. 4. 

 
Fig. 4. Complete diagram of the proposed approach 

4.1 System setup 

Raw data is standardized by subtracting the mean of the 
original data from all the training data. Since the 
proposed approach uses the previous 22 load values to 
predict the 23rd load value, the 22 values before each 
moment are set to be the training features, and the load 
value at that moment is set to be the training label. 

Since the correction results of the missing data and 
deficient data are similar, only the missing data case and 
the minimax case will be discussed in the following 
context. For the construction of missing data, the load 
value for a random period of time is assigned to be 0 in 
the test data. In this experiment, five consecutive random 
time series in the test dataset are set to be 0 while the 
others remained unchanged. For the construction of the 
minimax data, a random time point is selected from the 
test data. Then the previous moment of this time is set to 
be a random large number, and the later moment of the 
time point is set to be a random small number. 

4.2 Prediction results for uncorrupted data 

Fig. 5 shows the prediction results for uncorrupted test 
data (487 sets in total). Intuitively, the prediction result is 
very close to the real data. In order to statistically 
evaluate the accuracy of the prediction, Mean Absolute 
Percentage Error (MAPE), Mean Square Error (MSE) 
and Root Mean Square Error (RMSE) of the prediction 
and the real data are calculated and compared with RNN 
prediction results. The results are shown in Table 1. 

 
Fig. 5. Prediction results for uncorrupted data 
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Results shows that the overall performance of LSTM 
model is better than the RNN with both high prediction 
accuracy and short computational time. 

Table 1. Prediction results for LSTM and RNN 

Model MSE RMSE MAPE CPU time 
LSTM 0.256 0.506 2.639 0.023s 

RNN 0.350 0.591 3.712 0.025s 

4.2 Prediction results for corrupted data 

4.2.1 The prediction results for missing data 

Fig. 6(a) and 6(b) shows the prediction results over the 
uncorrected anomalous data and the corrected anomalous 
data, respectively. Obviously, the missing data has 
greatly affected the accuracy of prediction in period of 
time when corruption occurred. However the influence of 
corruption is getting weaker as the time sequence 
deviated from anomaly point which indicates that the 
proposed algorithm has fair anti-interference ability. 
Furthermore, when the dataset is fixed, it can be seen that 
the difference between the corrected data and the ground 
truth data is relatively small and the prediction results are 
more accurate than the results without correction, 
especially the results in the time period with missing data. 

 
(a). The prediction results over uncorrected data        

 
(b). The prediction results over corrected data        

Fig. 6. The prediction results for missing data 
Numerical results are also presented in Table 2 to 

further discuss the performance. As shown in Table 2, the 
proposed anomaly correction algorithm results in smaller 
MSE and MAPE but longer CPU time due to the dynamic 
correction during prediction. In addition, although the 
prediction accuracy over the uncorrected data has 

decreased, it has not decreased significantly, which also 
proves the robustness of the system from another 
perspective, i.e., certain amount of interference does not 
cause serious damage to the stability of the system. 

Table 2. Prediction results for missing data 

Data  MSE RMSE MAPE CPU time 
Standard 0.256 0.506 2.639 0.023s 

Uncorrected 1.214 1.101 3.433 0.019s 

Corrected 0.269 0.519 2.678 0.073s 

4.2.1 The prediction results for minimax data 

Fig. 7(a) and 7(b) shows the prediction results over the 
uncorrected minimax data and the corrected minimax 
data, respectively. Similar to the missing data senecio, 
when the dataset is corrected, the difference between the 
corrected data and the ground truth data is relatively 
small and the prediction results are more accurate than 
the results without correction. However, it can be 
intuitively seen that the influence of minimax value on 
prediction is less than that of missing value. This 
phenomenon could possibly be explained by the 
sensitivity of the LSTM model to the correlation of 
continuous time series. Since the missing data is a series 
of anomaly in continuous time while the minimax data is 
just some discrete points over time, the damage of the 
data correlation is more serious for missing data which 
result in inferior prediction performance. 

 
(a). The prediction results over uncorrected data        

 
(b). The prediction results over corrected data        

Fig. 7. The prediction results for minimax data 
Numerical results are also presented in Table 3 to 

further discuss the performance. As shown in Table 3, the 
proposed anomaly correction algorithm results in smaller 
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MSE and MAPE and is even smaller than the results for 
missing data which further illustrates the sensitivity of the 
proposed model to data correlation. 

Table 3. Prediction results for minimax data 

Data  MSE RMSE MAPE CPU time 
Standard 0.256 0.506 2.639 0.023s 

Uncorrected 0.550 0.741 2.912 0.025s 

Corrected 0.271 0.520 2.644 0.054s 

5 Conclusions 

Short-term electricity load is hard to predict due to its 
nonlinearity and non-stationarity. However, the 
traditional non-learning algorithm cannot capture the 
correlation of load series in the time dimension rendering 
low prediction accuracy. In this paper, a LSTM-based 
algorithm is proposed and tested for short-term load 
prediction and anomaly correction on the basis of a large 
amount of existing research. The results show that the 
proposed approach could learn the correlation of load 
series and output accurate predictions with a short 
convergence time. In addition, when anomalous data such 
as missing data and the minimax data appears, the 
algorithm is able to detect the occurrence of anomaly and 
repair the anomaly adaptively. The error between the 
prediction result over corrected data and the standard data 
is small, which indicates that the proposed model has the 
advantage of high accuracy, stability and practical 
significance. 

Furthermore, the algorithm of the prediction results 
over minimax data is better than that of the missing data 
in general which means that the algorithm has certain 
sensitivity for continuous anomaly sequence over time 
and cannot adapt to the data distortion over a long period 
of time. Therefore future research needs to be carried out 
into how to better improve the proposed model to make it 
less sensitive to long time data corruption is worth 
thinking. Finally, due to the existence of dynamic 
anomaly correction, the processing time of the algorithm 
is increased. How to improve the convergence speed 
remains to be studied. 
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