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Abstract. This paper systematically discusses two-population asymmetric evolutionary games (2PAEGs) 
from the perspective of decision-making behavior characteristics, and applies these game models to a two-
population supply-side electric power bidding market. First, a 2PAEG model is established. Then, complete 
evolutionary equilibrium rules of this model are revealed during decision-making processes. Discussion 
shows that final evolutionary game equilibria achieved in the 2PAEG model are only determined by some 
payoff parameters, which are defined as relative net payoff (RNP) parameters in this paper. Finally, a case 
study of supply-side bidding simulation for two generator populations is conducted, which can effectively 
verify the universality and effectiveness of the evolutionary dynamics results obtained in the established 
general 2PAEG model. Moreover, it shows that reasonable policies made by the government can guide 
more appropriate power bidding for onto-grid electricity. 

1 Introduction 
Recently, the energy and electric power systems (EEPS’s) 
have developed rapidly around the world, such as energy 
interconnection system, ubiquitous Internet of things in 
electricity, and integrated energy systems. Under this 
background, more and more countries are focusing on 
the construction and development of smart grids (SGs) 
[1]. In this context, electricity markets (EMs) are also 
developing rapidly throughout the world, such as 
America Pennsylvania—New Jersey—Maryland (PJM) 
EM [2], Beijing Power Exchange Center in China [3]. 
Currently, how to determine an optimal strategy for 
decision-making agents in an EM is still a challenging 
topic [4], [5]. This is also promising, because the 
solution of this topic can effectively balance and 
optimize the benefits of all sides in an EM. Traditional 
optimization theory system, which is characterized by 
single-agent decision-making, cannot better to address 
this topic. To this end, more and more scholars try to 
investigate this area combining with game theory (GT). 
GT has gradually become a powerful mathematical tool 
to solve multi-agent decision-making issues in a 
competitive EM.  

GT was first founded by Von Neumann and 
Morgenstern in 1940s [6], and now it has been generally 
used for decision situations wherein one party is in 
conflict with another (i.e., a two-party game) or others 
(i.e., a multi-population game). GT can be divided into 
three major categories, namely cooperative game theory, 
non-cooperative game theory, and evolutionary game 
theory (EGT). Among these, EGT is gradually treated as 

a powerful mathematical tool to investigate the decision-
making behavior characteristics of multiple populations 
in a long-term evolution process. 

EGT is developed based on natural selection 
mechanisms with strict bounded rationality assumptions. 
Hence, it is more suitable for solving practical decision 
issues, and can better describe the spontaneous evolution 
process of different populations. Actually, a general 
multi-population evolutionary game (MPEG) model can 
provide more direct and convenient theoretical reference 
for the application of EGT tools. Currently, researchers 
have preliminarily investigated such issues from 
different angles. For example, Wang et al. [7] use an 
evolutionary game approach to analyze the bidding 
strategies in an EM with elastic demand, where the 
generator companies (GENCOs) are represented as 
different populations in the coevolutionary algorithm to 
search the equilibrium. Bahmani-Firouzi et al. [8] 
propose a scenario-based market clearing model to 
achieve optimal bidding strategies of GENCOs in the 
incomplete information EM. Vijaya Kumar and Vinod 
Kumar [9] develop a Shuffled Frog Leaping algorithm 
for the generation bidding strategy in a pool based EM. 
On the whole, the power bidding of GENCOs in an EM 
is a process of long-term dynamic evolution with 
bounded rationality and incomplete information. 
Obviously, EGT is a better mathematical tool to solve 
the issues of optimal bidding strategy for the GENCOs 
in an EM.  

For this motivation, we first systematically 
investigate the complete evolutionary dynamics of a 
general two-population evolutionary game (2PAEG) 
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model in this paper. Based on this, we then try to use it 
to solve the issues of power bidding for the supply-side 
GENCOs in a competitive EM. 

2 Modelling of a general 2PAEG 

2.1 Several important concepts in EGT 

1)Population. The dynamics models in EGT can be 
classified into monomorphic population dynamics model 
and polymorphic population dynamics model. The 
former refers to only one population in which individuals 
have the same pure strategy playing in a symmetric 
game. The latter involves multiple populations and 
meanwhile, individuals from different populations may 
have different pure strategies playing in an asymmetric 
game. In particular, in an asymmetric game, participants 
have asymmetric information to the preferences of each 
other [10].  

2) Replicator dynamics (RD). RD assumes that the 
growth rate of a strategy is given by its average payoff 
(i.e., the fitness function) [11]. Here, set siS is a pure 
strategy of individual i, where i={1, 2, …, n} and S={s1, 
s2, …, sn}, xi(t) represents the number of individuals who 
choose si at time t, where x={x1, x2, …, xn}, and fi(s, x) 
denotes the fitness function of individuals who choose si 
at time t. Then, the discrete-time and continuous-time 
RD models are presented as follows. 

( 1) ( ) ( , ) ( ), discrete-time
( , ) , continuous-time

i i i i

i i i

x t x t f s x x t
x f s x x

  
   

  (1) 

3) Evolutionarily stable strategy (ESS). It is used to 
describe such a strategy that is adopted by most 
individuals in a population in one game and meanwhile, 
any mutation strategy cannot invade this population. 
Obviously, ESS has the highest stability in a defined 
strategy set S. Here, assume that strategies s and s 
belong to S, and then for any s(s≠s), s will become and 
ESS if there is always a positive number ε(0, 1) that 
makes the fitness functions of s and s meet 

( , (1 ) ) ( , (1 ) ), (0, )f s s s f s s s                 (2) 
where ( )f   represents the fitness function, and εs+(1-
ε)s denotes a mixed strategy that may be a mutation 
strategy.  

4) Lyapunov stability theory (LST). LST is generally 
used to analyze the asymptotical stability of an internal 
equilibrium point of the RD equation(s). Here, the ESS 
of the whole MPEG system is determined by the 
asymptotically stable state of its RD equation(s) [12], 
[13]. According to LST, if the eigenvalues of Jacobian 
matrix of the RD equations all have a negative real part 
at an internal equilibrium point, then such point will be 
asymptotically stable, and an evolutionary game 
equilibrium (EGE) can be achieved at this point. 

2.2 Establishment of a general asymmetric 
2PAEG 

1) Payoff distribution matrix. In an asymmetric 2PAEG, 
two populations, denoted by A and B, separately have 

two incompatible pure strategies in their strategy set. 
Concretely, A has two pure strategies to choose, i.e., A1 
and A2, which means participate in and does not 
participate in a game, respectively, and they are selected 
by individuals in population A with a proportion of x and 
1-x. Similarly, B1 and B2 are two incompatible pure 
strategies of population B with a selection proportion of 
y and 1-y in population B in a game, respectively. Then, 
the payoff distribution matrix of such a general 
asymmetric 2PAEG is presented as follows: 

 1 2

1

2

Population B

( , ) ( , )
Population A

( , ) ( , )

B B
A a b c d
A e f g h
 
 
 

  (3) 

where a, b, c, d, e, f, g and h are illustrative payoff 
parameters.  

2) RD equations. Based on (3), and referring to [12], 
the RD equations of this general asymmetric 2PAEG are 

 1 2

3 4

(1 )( )
(1 )( )

x x x y
y y y x

 
 

  
   




  (4) 

where γ1=a-c-e+g, γ2=c-g, γ3=b-f-d+h, and γ4=f-h. 
Further, the Jacobian matrix of (4), i.e., J1, and its 
determinant and trace, denoted by det(J1) and tr(J1), 
respectively, are as follows 
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3 11
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10 11

(1 2 ) ( ) (1 )
(1 ) (1 2 ) ( )

( ) (1 2 )(1 2 ) ( ) ( ) (1 )(1 )
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where γ10(y)=γ1y+γ2 and γ11(x)=γ3x+γ4. Here, a-e and 
γ2 are defined as relative net payoff (RNP) parameters of 
population A when it chooses strategy A1 while 
population B selects strategies of B1 and B2, respectively; 
and b-d and γ4 are RNP parameters of population B when 
it chooses strategy B1 while population A chooses 
strategies of A1 and A2, respectively.  

Obviously, the RD equations in (4) have five internal 
equilibrium points, namely ={(x, y)|(0, 0), (0, 1), (1, 0), 
(1, 1), (x*, y*)}, where x*=-γ4/γ3 and y*=-γ2/γ1. To observe 
the evolution of (4) more clearly, 8 cases are simulated 
as shown in Fig. 1, where Case 1 and Case 2 show that 
(0, 0) and (1, 1), and (0, 1) and (1, 0) are two EGEs 
simultaneously, respectively; Cases 3 to 6 illustrate that 
a unique EGE is achieved at (0, 0), (0, 1), (1, 0), and (1, 
1), respectively, Case 7 demonstrates that an EGE cannot 
be achieved at (x*, y*), and Case 8 reveals that no EGE 
may be achieved in a certain game situation. 

According to Fig. 1, we can further conclude that the 
complete evolutionary dynamics of the general 
asymmetric 2PAEG contains 16 game situations, which 
are only determined by four groups of RNP parameters, 
i.e., γ2, γ4, γ5, and γ6, where γ5=a-e, and γ6=b-d. Based 
these four groups of RNP parameters, the complete 
evolutionary dynamics statistics of the general 
asymmetric 2PAEG can be revealed as demonstrated in 
Table 1, where ×, ♥ and ○ signify an unstable, stable (i.e., 
EGE) and saddle point or center, respectively.  
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Fig. 1. Illustration of the complete evolutionary dynamics 
characteristics of the general 2PAEG in 8 game situations. 

Obviously, from Table 1 and Fig. 2 we can conclude 
that, i) (x*, y*) is always a saddle point (or a center); ii) 
48 game scenarios are formed totally, where a saddle 
point or center appears; iii) 16 game scenarios are 
formed totally, where an unstable point appears; iv) 16 
game scenarios are achieved totally, where the general 
asymmetric 2PEGM can achieve an EGE, i.e., the whole 
game system can finally reach evolutionarily stable; and 
v) among these EGEs, an EGE can be achieved at (0, 0), 
(0, 1), (1, 0) and (1, 1) at four times, respectively. 

Table 1. Illustration of the evolutionary dynamics 
characteristics of the general 2PAEG in a total of 16 game 

situations. 

Game 
situations 

Asymptotical stability 
conditions 

Internal equilibrium points of RD 
equations

(0, 0) (0, 1) (1, 0) (1, 1) (x*, y*)
Situation 1 γ2>0, γ4>0, γ5>0 and γ6>0 × ○ ○ ♥ ○ 
Situation 2 γ2>0, γ4>0, γ5>0 and γ6<0 × ○ ♥ ○ ○ 
Situation 3 γ2>0, γ4>0, γ5<0 and γ6>0 × ♥ ○ ○ ○ 
Situation 4 γ2>0, γ4>0, γ5<0 and γ6<0 × ♥ ♥ × ○ 
Situation 5 γ2>0, γ4<0, γ5>0 and γ6>0 ○ × ○ ♥ ○ 
Situation 6 γ2>0, γ4<0, γ5>0 and γ6<0 ○ × ♥ ○ ○ 
Situation 7 γ2>0, γ4<0, γ5<0 and γ6>0 ○ ○ ○ ○ ○ 
Situation 8 γ2>0, γ4<0, γ5<0 and γ6<0 ○ ○ ♥ × ○ 
Situation 9 γ2<0, γ4>0, γ5>0 and γ6>0 ○ ○ × ♥ ○ 

Situation 10 γ2<0, γ4>0, γ5>0 and γ6<0 ○ ○ ○ ○ ○ 
Situation 11 γ2<0, γ4>0, γ5<0 and γ6>0 ○ ♥ × ○ ○ 
Situation 12 γ2<0, γ4>0, γ5<0 and γ6<0 ○ ♥ ○ × ○ 
Situation 13 γ2<0, γ4<0, γ5>0 and γ6>0 ♥ × × ♥ ○ 
Situation 14 γ2<0, γ4<0, γ5>0 and γ6<0 ♥ × ○ ○ ○ 
Situation 15 γ2<0, γ4<0, γ5<0 and γ6>0 ♥ ○ × ○ ○ 
Situation 16 γ2<0, γ4<0, γ5<0 and γ6<0 ♥ ○ ○ × ○ 

To observe the evolution characteristic of decision-
making behavior in each game situation presented in 
Table 1, we simulate the phase trajectory of (x, y) in each 
game scenario, as demonstrated in Fig. 2. In this figure, 
Cases 1 to 16 represent the game situations 1 to 16 in 
Table 1, respectively. 

 

Fig. 2. Illustration of the complete evolutionary dynamics 
characteristics of the general 2PAEG in all game situations. 

Overall, this general asymmetric 2PEMG can have 
16 times totally to achieve an EGE eventually. Moreover, 
each EGE is only determined by four groups of RNP 
parameters, i.e., γ2, γ4, γ5, and γ6. Therefore, we can 
appropriately adjust these RNP parameters to make this 
general asymmetric 2PAEG achieve some expected 
rational EGEs during the process of evolution. For 
example, the government can formulate some 
supervision policies such as rewards and punishments to 
make the equilibrium results of the competitive EM 
toward a reasonable operation direction. To verify this, a 
case study of supply-side bidding simulation for two 
generator populations is conducted as follows. 

3 Case study 

3.1 Supply-side power bidding model in China 

Taking China as an example, where GENCOs are 
independent economic entities and they participate in 
competition in an EM through the power bidding. Here, 
the process of power bidding is generally a repeated 
game, in which the market clearing price (MCP) is the 
final market equilibrium result. Hence, EGT is suitable 
for investigating the equilibrium of such a long-term 
bidding development process. Based on Section II, we 
take two GENCO populations as research objectives in 
this case study, which are denoted by population A and 
population B, respectively. Actually, this can be 
extended to more than two GENCO populations, while 
just increasing the complexity of model calculation and 
analysis. To this end, we consider a two-population 
GENCO power bidding model in the case study. Here, 
for each GENCO population, the cost function of 
generator j, denoted by C(Pj), is generally presented as 

 2( ) , 1,2, ,j j j j j jC P a b P c P j n       (6) 
where nʹ is the total number of generators in a 

population, aj, bj and cj are cost coefficients, and Pj is the 
generating capacity of generator j. Further, the profit 
function of generator j, denoted by P(Pj), is presented as 
follows: 

 R( ) ( ), 1,2, ,j j jP P B P C P j n      (7) 
where BR is the MCP. Therefore, the bidding strategy 

of generator j is to maximize P(Pj) as follows 
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where Q is the total demand of the market (MW), 
Bj(Sj, Pj) is the bidding curve of generator j that is 
provided to the trading center, and Sj is the bidding 
strategy set of generator j. 

3.2 Simulation analysis 

In above-proposed model, we assume that GENCO 
populations A and B have sufficient bidding units in a 
certain regional EM, and they have different sizes of 
generating capacity in this EM. Overall, the parameters 
of A and B are demonstrated in Table 2. 

Table 2. Parameters of GENCO populations A and B during 
bidding process 

Parameters Population A Population B
Cost function C(Pj) /(CNY/h) 6700+110PA-0.18PA

2 8000+91.4PB-0.076PB
2

Nominal generation capacity 
/MW

220 500 
1Minimum stable load /MW 110 200 

2Controlled maximum quotation 
/(CHY/MWh) 300 300 

Minimum quotation 
/(CHY/MWh) 151.11 116.2 

1which means minimum generation capacity provided for bidding, and 
usually 40%~50% of nominal generation capacity; 2which means the 
upper limit of trading price in the EM, with unit is CNY/MWh.  

Moreover, assume that populations A and B both 
have two strategies, SH: high bidding strategy, and SL: 
low bidding strategy, which are determined by the upper 
limit and lower limit of the same capacity segment, 
respectively. Concretely, SH signifies that GENCOs 
declare high prices permitted by market rules to obtain 
high returns from high clearing prices, and SL indicates 
that GENCOs report relatively low prices hoping to 
increase power generation amount to network to obtain 
high returns. Additionally, assume that the maximum 
quotation of EM is 400 CNY/MWh, and A and B can 
provide generation capacities of 360MW and 880MW, 
respectively, and they both quote based on five capacity 
segments, as demonstrated in Table 3. 

Table 3. Bidding scheme of populations A and B based on five 
capacity segments 

Population A 
Capacity segments 

(110 132] (132 154] (154 176] (176 198] (198 220]
High price SH 270 280 290 295 300
Low price SL 151.11 161.11 171.11 176.11 181.11

Population B 
Capacity segments 

(200 260] (260 320] (320 380] (380 440] (440 500]
High price SH 274 284 294 297 300
Low price SL 116.2 126.2 136.2 139.2 142.2 

Based on above settings, the payoff combinations are 
set as follows. (SH, SH): (a, b), (SH, SL): (c, d), (SL, SH): (e, 
f), and (SL, SL): (g, h), where a-e, c-g, b-d and f-h are 
RNP parameters. Here, (a, b), (c, d), (e, f) and (g, h) are 
not necessarily assumed as common knowledge for 
GENCO populations A and B, and they are obtained as 
(a, b)=(32432, 97177.6), (c, d)=(20628, 36400), (e, 
f)=(17656.2, 79962.4), and (g, h)=(11031.8, 27745.6), 

unit is CNY/h. Among these, for example, a is calculated 
as follows: a=295180-(6700+110180-0.181802) 
=32432. Obviously, calculation results show that this 
case is a typical asymmetric 2pEGM. Therefore, 
according to (4), RNP parameters of this asymmetric 
supply-side power bidding evolutionary game system are 
obtained as follows, γ1=a-c-e+g=5179.6, γ2=c-g=9596.2, 
γ3=b-f-d+h=8563.9, and γ4=f-h=52219.85. Thereby, its 
RD equations are presented as 

 1 2

3 4

(1 )( ) (1 )(5179.6 9596.2)
(1 )( ) (1 )(8563.9 52219.85)

x x x y x x y
y y y x y y x

 
 

     
      




  (9) 

where x and y represent the proportion of generators 
choosing SH in populations A and B, respectively.  

Obviously, due to x, y[0, 1], x=0 or 1, and y=0 or 1 

are the solutions of (9). Since 
0

d d 0
d d x

x
x t 

   
 

 and 

1

d d 0
d d x

x
x t 

   
 

, GENCO population A will achieve an 

EGE at x=1; and similarly, GENCO population B will 

achieve an EGE at y=1 due to 
0

d d 0
d d y

y
y t 

   
 

 and 

1

d d 0
d d y

y
y t 

   
 

. Then, (x, y)=(1, 1), i.e., (SH, SH) becomes 

an EGE in populations A and B, which can resist any 
mutation strategy. This indicates that all GENCOs in A 
and B will tend to adopt SH, the high bidding strategy, 
during strategy evolution. Hence, aiming at (9), we 
simulate 6 cases as demonstrated in Fig. 3, where Cases 
1 to 6 represent 55, 1010, 1515, 2020, 2525 and 
3030 times of different initial points of (x, y) within [0, 
1][0, 1]. Simulations show that A and B will both 
choose SH finally; hence, (SH, SH) becomes the unique 
EGS in this asymmetric two-population supply-side 
bidding evolutionary game. The simulations 
demonstrated in Fig. 3 are completely consistent with 
above theoretical analysis and the conclusions drawn in 
Section II.  

Certainly, to guide the supply-side bidding in the EM 
to develop more rationally, (0, 0), i.e., (SL, SL) can be 
made to be the unique EGE by adjusting current market 
rules appropriately by the government. At this point, low 
bidding strategy (i.e., base price bidding) become 
evolutionarily stable while high bidding strategy will 
turn into unstable strategy and gradually disappear after 
a long-term evolution. Therefore, reasonable bidding 
rules can guide more appropriate power bidding for 
onto-grid electricity. To this end, according to Table 1, 
we can adjust χ2, χ4, χ5 and χ6 to make (0, 0) become the 
unique internal stable equilibrium point. For example, let 
γ2=c-g<0, γ4=f-h<0, γ5=a-e<0, and γ6=b-d>0, thereby 
reporting low bid price simultaneously (SL, SL) becomes 
the unique EGE in this two-population supply-side 
power bidding evolutionary game system, as 
demonstrated in Fig. 4, where Cases 1-5 respectively 
represent 55, 1010, 2020, 3030, and 4040 times of 
different initial points of (x, y) selected from region [0, 
1][0, 1], with simulation time t[0, 5]. Simulation 
results show that (SL, SL) becomes a unique ESS. At this 
point, GENCO populations A and B finally tend to 
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choose low bidding strategy SL simultaneously to 
minimize their payoffs during power bidding in an EM. 

 

  

  

Fig. 3. Illustration of GENCO populations A and B finally tend 
to adopt the high bidding strategy SH during strategy 
adjustment when no governmental supervision is implemented. 

  

 

Fig. 4. Illustration of GENCO populations A and B finally tend 
to adopt the more reasonable low bidding strategy SL during 
strategy evolution when effective and reasonable governmental 
supervision is implemented. 

4 Conclusion 
Based on the principles of replication, selection and 
mutation during population evolution, EGT provides a 
more reasonable tool for studying the decision-making 
behavior of stakeholder populations with bounded 
rationality and imperfect information in practical issues. 
In this paper, we systematically investigate and 
summarize the complete evolutionary dynamics of 
general 2PAEGs. We find that there are 48, 16, and 16 
scenarios totally where a saddle point, unstable point, 
and asymptotically stable point will appear, respectively. 
Among these, (0, 0), (0, 1), (1, 0) and (1, 1) all have four 
times to reach evolutionarily stable. Moreover, the final 
EGE achieved in the general 2PAEG is only determined 
by some groups of RNP parameters.  

Further, we conduct a case study of a two-population 
supply-side bidding game among GENCO populations. 
The simulation results show that GENCO populations 
with two different bidding strategies all finally tend to 
choose the high bidding strategy, i.e., (SH, SH), to 

maximize their benefits. However, this is not conducive 
to the sound operation of the entire bidding market in a 
long-term development period. Therefore, according to 
the RNP parameters in this power bidding evolutionary 
game system, the government can formulate some 
supervision policies such as rewards and punishments to 
appropriately adjust the RNP parameters to make the low 
bidding strategy more beneficial and stable after a long-
term evolution, i.e., (SL, SL) gradually becomes 
evolutionarily stable while (SH, SH) gradually becomes 
unstable and finally disappear in the entire evolutionary 
game system after a long-term development.  

In the future, we can combine artificial intelligence 
(AI) techniques such as machine learning methods (e.g., 
reinforcement learning, deep learning, transfer learning, 
assemble learning) [14] with EGT to solve the complex 
behavioral decision-making issues of multi-stakeholder 
populations with bounded rationality and imperfect 
information in the engineering field, such as the field of 
power bidding in the EM. Besides, the evolutionary 
game games on complex systems can also be considered 
in the next step. 

Acknowledgement 
This work was supported in part by the National Natural 
Science Foundation of China under Grant 51777078, and in 
part by the Science and Technology Project of China Southern 
Power Grid Company Ltd., under Grant GDKJXM20180576. 

References 
1. L.F. Cheng, T. Yu, X.S. Zhang, L.F. Yin, and K.Q. 

Qu, “Cyber-physical-social systems based smart 
energy robotic dispatcher and its knowledge 
automation: framework, techniques and challenges,” 
Proceedings of the CSEE, vol. 38, no. 1, pp. 25-40, 
Jan. 2018. 

2. Monitoring analytics. Reports: PJM state of the 
market. 2017-01-09. http: 
//www.monitoringanalytics.com/reports/PJM_State_ 
of_the_Market/2016.shtml. 

3. L.J. Shi, B. Pang, D.N. Liu, G.Y. Qin, G.D. Li, and 
Q. Zhang, “Power market transaction analysis of 
index of Beijing electric power exchange center 
under new electricity reform,” Automation of 
Electric Power Systems, vol. 43, no. 6, pp. 163-170, 
Mar. 2019. 

4. L.F. Cheng and T. Yu, “Game-theoretic approaches 
applied to transactions in the open and ever-growing 
electricity markets from the perspective of power 
demand response: An overview,” IEEE Access, vol. 
7, no. 1, pp. 25727-25762, Mar. 2019. 

5. L.F. Cheng and T. Yu, “Nash equilibrium-based 
asymptotic stability analysis of multi-group 
asymmetric evolutionary games in typical scenario 
of electricity market,” IEEE Access, vol. 6, no. 1, pp. 
32064-32086, Dec. 2018. 

6. J Von Neumann and O Morgenstern. The theory of 
games and economic behavior. 2nd edition, 

5

E3S Web of Conferences 194, 03009 (2020)	 https://doi.org/10.1051/e3sconf/202019403009
ICAEER 2020



 

Princeton: Princeton University Press, 1947, pp. 1-
15. 

7. J.H. Wang, Z. Zhou, and A. Botterud, “An 
evolutionary game approach to analyzing bidding 
strategies in electricity markets with elastic 
demand,” Energy, vol. 36, pp. 3459-3467, Apr. 2011. 

8. B. Bahmani-Firouzi, S. Sharifinia, R. Azizipanah-
Abarghooee, and T. Niknam, “Scenario-based 
optimal bidding strategies of GENCOs in the 
incomplete information electricity market using a 
new improved prey-predator optimization 
algorithm,” IEEE Syst. J., vol. 9, no. 4, pp. 1485-
1495, Dec. 2015. 

9. J. Vijaya Kumar and D.M. Vinod Kumar, 
“Generation bidding strategy in a pool based 
electricity market using Shuffled Frog Leaping 
algorithm,” Appl. Soft Comput., vol. 21, pp. 407-414, 
Apr. 2014. 

10. S. Abapour, M. Nazari-Heris, B. Mohammadi-
lvatloo, and M.T. Hagh. “Game theory approaches 
for the solution of power system problems: a 
comprehensive review,” Arch. Computat. Methods 
Eng., to be published, pp. 1-23, Nov. 2018. 
https://doi.org/10.1007/s11831-018-9299-7 

11. V. Krivan, T.E. Galanthay, and R. Cressman, 
“Beyond replicator dynamics: From frequency to 
density dependent models of evolutionary games,” J. 
Theor. Biol., vol. 455, pp. 232-248, 2018. 

12. L.F. Cheng and T. Yu, “Typical scenario analysis of 
equilibrium stability of multi-group asymmetric 
evolutionary games in the open and ever-growing 
electricity market,” Proceedings of the CSEE, vol. 
38, no. 19, pp. 5687-5703, Oct. 2018. 

13. L.F. Cheng and T. Yu, “Decision-making behavior 
investigation for general multi-strategy evolutionary 
games in the spontaneous formation of long-term 
bidding equilibria of a power generation market,” 
Proceedings of the CSEE, accepted, doi: 
10.13334/j.0258-8013.pcsee.191237. 

14. L.F. Cheng, T. Yu, X.S. Zhang, and L.F. Yin, 
“Machine learning for energy and electric power 
systems: state of the art and prospects,” Autom. 
Electr. Power Syst., vol. 43, no. 1, pp. 15-31, Jan. 
2019. 

6

E3S Web of Conferences 194, 03009 (2020)	 https://doi.org/10.1051/e3sconf/202019403009
ICAEER 2020


