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Abstract. Permeable pavement material is one of the most important supporting materials in the 
construction of sponge city, and its water permeability is the most important performance index. The water 
permeability test of permeable pavement materials is a tedious and complicated experimental work. It is of 
great research significance to predict the water permeability of permeable pavement materials through 
structural parameters modeling. In this paper, the database is first established by experimental means, and 
then the prediction models of LASSO (Least absolute shrinkage and selection operator), SVR (Support 
vector regression) and GBR (Gradient Boosting Regression) machine learning algorithms are established. 
Through the four factors of particle size, particle size distribution, shape parameters and binder content 
predict the water permeability of sponge city pavement materials. The results show that different machine 
learning algorithms have different sensitivity to the distribution of data samples. The fitting effect of GBR 
model water permeability prediction is better than that of SVR and LASSO models. The test value-predicted 
value MSE is 0.0051 and R2 is 0.92, which can effectively predict the water permeability of sponge city 
pavement materials. 

1 Introduction 
To solve the problem of traditional cities, the concept of 
"sponge city" came into being in the era of water 
shortage, water quality pollution, urban waterlogging 
and other urban water problems in various countries 
around the world. It has great significance for 
accelerating urban modernization and ecological 
civilization construction. The pavement materials used in 
the construction of sponge city can be well used in the 
design of permeable pavement and the ecological 
purification system due to their good permeability and 
biocompatibility, and thus become the main supporting 
materials in the construction of sponge city[1-3]. 

Water permeability is one of the most important 
properties of sponge city pavement materials. In the 
United States, Europe, Canada and other places, the 
permeability coefficient is used to reflect the water 
permeability of pavement materials. For the on-site 
permeability testing of the project, the penetration ring is 
mostly used, but the national standards have not been 
unified[4]. The results of the water permeability test using 
the different permeable ring show a large difference. At 
the same time, this detection method has high 
requirements on pavement resettlement points and test 
environment; For the laboratory permeability testing, 
two types of constant-head permeameters and variable-
head permeameters are mainly used in domestic and 
overseas[5]. The permeability coefficient is converted 
through the permeation amount per unit time and the 

length, width and height of the test piece to evaluate the 
water permeability performance, but there are no 
relevant regulations on the influence factors such as the 
test piece and the penetration device. Regardless of the 
method used to study the water permeability of 
pavement materials, obtaining a large amount of data 
through experiments requires a lot of manpower, 
material resources, and time, and is susceptible to 
external conditions, resulting in lower experimental 
efficiency and greater errors. 

At present, most of the domestic and foreign sponge 
city materials permeation performance research models 
are physical models: Xinxin Li[6]et al. idealized 
permeable concrete into a three-phase composite 
material composed of coarse aggregate, mortar and ITZ, 
and used the zero thickness interface element to model 
the interface transition zone structure. The results show 
that based on the characteristic assumption of ITZ, this 
method can be used to predict the water permeability of 
concrete. The numerical results are in good agreement 
with the experimental results, and the model simulation 
results are stable; Masad[7] et al. used the finite 
difference method and the finite element method to 
analyze the water infiltration form inside the pavement 
structure, and validated the numerical scheme by 
simulating the fluid flow in the ideal microstructure in 
parallel cracks and stacked cubes. The results show that 
the numerical results are in good agreement with the 
closed-form solution and can be used to simulate the 
fluid flow in the microstructure of actual porous media, 
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but the permeability is greatly affected by the number of 
iterations and the resolution of the 3D image; Kuang[8] et 
al. used the finite element model to explore the 
relationship between the pore distribution characteristics 
and the penetration rate of the pavement material. The 
hydraulic conductivity(k) was measured by collecting 
test samples of permeable pavement on site, and an 
improved KCM model was proposed based on the pore 
structure model including the KCM model and used to 
predict the k value of the permeable pavement structural 
parameters. Combining the prediction result k with the 
continuous rainfall simulation model used in history can 
be used to provide a nomogram of the inspection of 
permeable pavement as a low-impact development (LID) 
infrastructure component. Although these physical 
models have achieved remarkable results in terms of 
theoretical thinking, mechanism of action, model 
construction, etc., there are too many presupposed 
assumptions and there are still some gaps between their 
presuppositions and the actual experimental conditions. 

The machine learning method is to learn statistical 
rules in a large number of training samples by using the 
algorithm model, so as to make predictions for unknown 
events. With the rise of artificial intelligence in recent 
years, machine learning methods are gradually combined 
with the field of materials science and gradually 
promoted and applied. Use different machine learning 
methods for the large number of experimental data sets 
currently available to predict material performance 
parameters and provide theoretical guidance for material 
experiments and applications[9]. Tibshirani R(1996)[10] 
has proposed a new variable selection method called 
LASSO inspired by the "Bridge Regression" proposed 
by Frank and the "Nonnegative Garrote" proposed by 
Bireman. Its advantage lies in its fast computing power; 
SVR was invented by Boser, Guyon and Vapnik. It first 
appeared in the paper of the Conference on 
Computational Learning Theory in 1992[11]. It can 
convert non-linear problems into linear problems, 
thereby solving the problem of high-dimensional model 
construction; The GBR algorithm is based on the 
boosting algorithm framework[12]. It has performed well 
in large-scale data competitions in recent years (such as 
Tianchi, Kaggle, etc.) and has received great attention. 
Its advantage lies in its low deviation. In view of the 
many factors affecting the performance of sponge city 
pavement materials and their non-linear laws, the model 
based on the three machine learning algorithms of 
LASSO, SVR, and GBR was selected for the prediction 
study of the performance of sponge city pavement 
materials. The training samples they require are few and 
have high accuracy. 

The machine learning algorithm is used to predict the 
permeation performance of sponge cities, as shown in 
Fig. 1. The original data set is divided into a training set 
and a test set. Different machine algorithm models are 
trained and learned through the training set, and then the 
trained machine algorithm model is used to predict the 
test set to obtain a regression fit. result. In this paper, 
three different machine learning algorithms, LASSO, 
SVR, and GBR, are used to establish a mathematical 
regression model based on the machine learning 

algorithm through experimental data. Through the four 
performance parameters of particle size, particle size 
distribution, shape parameter and binder content, water 
permeability prediction is performed, and the prediction 
accuracy of the model is compared and evaluated. 

 

Fig. 1 Workflow of predictive model based on machine 
learning algorithm 

2 Experimental methods and principle 

2.1 Raw materials 

The sponge city pavement material studied in this work 
is resin-based composite permeable material. The raw 
materials are mainly aggregate and binder. In order to 
make the performance indexes of the resin-based 
composite permeable material comparable, the same 
binder is used uniformly. 

Aggregate: Different types of aggregates are selected 
nationwide. The basic physical parameters are shown in 
Table 1. Image analysis method is used to obtain the 
particle group parameters, as shown in Fig. 2. 

The particle size of the aggregate is taken as the 
minimum ellipse short axis of the aggregate, as shown in 
Fig. 3. 

Roundness is expressed as the ratio of the area of a 
circle of equal perimeter to the projected area of the 
particle projection, which characterizes how similar the 
particle projection is to the circle. The closer the value is 
to 1, the rounder the particles. Its definition is: 

        (1) 

Binder: The binder used in the test is a two-
component binder, where component A is E44 
thermosetting epoxy resin with an epoxy value of 0.41-
0.47 and the liquid is white and transparent; component 
B is a polyamine type 593 alicyclic Family curing agent, 
the liquid is light yellow transparent. The curing of the 
binder needs to be carried out under dry conditions. The 
strength of one day after curing can reach 85% of the 
maximum strength. It has the advantages of rapid 
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prototyping test blocks for testing. Its basic properties 
are shown in Table 2. 

Table 1 Twelve kinds of aggregate basic performance 
parameters 

No. 
Bulk 

density 
True 

density 
Average grain 

diameter 
Roundness 

A 1.55 2.65 0.49 1.05 
B 1.41 2.66 0.10 1.14 
C 1.48 2.65 0.38 1.06 
D 1.47 2.60 0.50 1.15 
E 1.48 2.63 0.46 1.12 
F 1.38 2.63 0.88 1.22 
G 1.33 2.65 1.08 1.18 
H 1.39 2.67 1.20 1.19 
I 1.22 2.66 0.82 1.11 
J 1.43 2.65 0.70 1.19 
K 1.41 2.66 0.23 1.13 
L 1.54 2.62 0.60 1.2 

Table 2 Properties of AB type epoxy resin 

Viscosity 
(20℃) 

 

Compressive 
strength 

/MPa 

Tensile 
Strength 

/MPa 

Bond 
strength 

/MPa 

Elongation 
/% 

60-100 ≥35 ＞15 ＞3.0 8 

 

(a) Orginial picture 
 

(b) Binarization Processing 

Fig. 2 Image analysis to obtain aggregate particle group 
parameters 

 
Fig. 3 Aggregate particle size 

 

2.2 Sample preparation  

2.2.1 Preparation  

For the preparation and testing of resin-based composite 
permeable pavement material test pieces, refer to 
"Standard_JG_T376-2012 Sand-based Permeable Brick". 
Weigh a certain amount of sand according to the recipe 
and pour it into the mixing pot, add a certain amount of 
epoxy resin, curing agent and admixture, and then put it 
in a planetary mortar mixer to mix evenly to obtain a 
uniformly mixed epoxy resin mortar mixture. The frame 
after removing the middle ribbed plate with cement 
mortar triple mold is a plate-shaped mold for making 
road material test pieces. The epoxy resin mixture is 
evenly laid in it, scraped flat with a scraper, covered with 
a 160mm×132mm×10mm steel plate and 160mm×

80mm × 34mm steel pad is placed in the press to 
pressurize to 2.5MPa, and the static pressure is formed 
for 90s. The molded epoxy resin mortar mixture can be 
removed after 24 hours of natural curing to obtain a 
resin-based composite permeable pavement material 
sample, as shown in Fig. 4(a). In this work, the self-
made water permeability tester (10cm×10cm×20cm) is 
used to test the water permeability of quantitative water 
(500ml) as shown in Fig. 4(b). 

2.2.2 Test 

This work uses a self-made water permeability tester to 
test the water permeability. The device is composed of 
transparent plexiglass cuboid (10cm × 10cm × 20cm) 
opened at the upper and lower ends, and the test material 
samples are bonded at the lower end, as shown in Fig. 
4(c). In this experiment, the vertical seepage velocity of 
quantitative water is used to express the permeability of 
the sample. Quantitative water (500ml) is used, that is, 
the fixed height of the permeable material specimen is 
5cm at the top. Record the penetration time of 
quantitative water from injection to the end of 
penetration, recorded as t1, and fresh water is injected 
again to repeat the measurement and record the 
penetration time t2. Water penetration rate v is calculated 
as follows: 

                                         (2) 

                                  (3) 
In the formula:  
v— the water permeability rate of the test block, 

accurate to 1.00 × 10-2cm/s; 
t— average time of water penetration, s; 
t1— first water penetration time, s; 
t2— second water penetration time, s; 
S— cross-sectional area, cm2, where S is the cross-

sectional area of the plexiglass rectangular cylinder, 
i.e.,100 cm2. 
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(a)Molded sample 

 
(b)Testing sample 

 
(c)Self-made  

permeability tester 

Fig. 4 Experimental sample preparation and testing 

2.3 Principles and methods 

2.3.1 LASSO[10,13] 

LASSO was first proposed by Robert Tibshirani in 1996 
and is a data dimensionality reduction method. The 
principle is to obtain a more refined model by 
constructing a penalty function, and automatically 
compress the independent variables that have little or no 
influence on the explanatory variables.  

The LASSO parameter estimation is defined as 
follows: 

     (4)   
In the formula: xj and y represent explanatory 

variables and response variables respectively; βj 
represents the regression coefficient; λ∈ [0,∞) is the 
harmonic parameter. The first part of the function can be 
regarded as an excellent expression of model fitting, and 
the second part is expressed as a penalty. Among them, 
the degree of LASSO regression complexity adjustment 
is controlled by the parameter λ: the larger the λ, the 
greater the amount of shrinkage, the greater the penalty 
for the linear model with more variables, and the fewer 
variables selected by the final model. 

2.3.2 SVR[11,14] 

SVR is a variant model of Support Vector Machine 
(SVM) proposed by Vapnik et al. The goal of SVR is to 
find a function that can well approximate the training 
instance by minimizing the prediction error, and when 
the error is minimized, maximize the flatness of the 
function to reduce the risk of fitting. 

Suppose the sample pair of the training set in the 
sample space is {(xi ,yi)}, i = 1, 2, ..., l, l is the sample 
pair of the training set, xi=[xi

1
 , xi 

2,···, xi
n]T, yi∈R are 

the corresponding output values. Now let f (x) = ωTφ(x) 
+ a, where ω is the weight vector and a is the threshold. 
SVR achieves the goal of regression by introducing the ε 
insensitive loss function. If the difference f (xi)-yi 

between the predicted value f (xi) and the sample value yi 
is less than the given ε, it is considered to be lossless. 
Then the SVR model is expressed as: 

              (5) 

C represents the penalty parameter, C > 0, when the 
value of C is large, the penalty for error classification 
increases, and when the value of C is small, the penalty 
for error classification decreases. The larger the C value, 
the better the fitting effect. ξi and ξi

* represent relaxation 
variables. For ease of processing, we refer to αi and αi

* in 
the Largrange function and the kernel function K(xi,xi) to 
transform the original problem into a dual problem, and 
finally get the regression function: 

       (6) 

2.3.3 GBR[12,15] 

GBR is an algorithm model that learns from its errors. It 
is essentially brainstorming, integrating a bunch of poor 
learning algorithms to learn. The core idea of the GBR 
model is to generate a CART tree based on the negative 
gradient direction fitting of the loss function. The GBR 
model uses the CART tree as a single model, can process 
multiple types of data, has low learning error. 

Suppose the data set is D = {(x1 ,y1), (x2 ,y2), ... , 
(xN ,yN)}, the loss function is L(xN ,yN), and the number 
of leaf nodes in each regression tree is J , Divide its 
input space into J disjoint regions R1m, R2m, ..., Rjm , and 
estimate a constant value kjm for each region, the 
regression tree gm(x) formula is: 

         (7) 

             (8) 

Initial model:                     

           (9) 

The regression tree continuously iterates, producing 
residuals, for m = 1 to M, m represents the m-th tree, and 
the residuals generated at each step generate the 
regression tree again, where the gradient descent step 
size is: 

   (10) 

After each step, the model can be updated, lr 
represents the learning efficiency:   

Final output model pm(x):               

      (11) 

The prediction accuracy is mainly affected by the 
number of regression trees (M), the depth of the tree (J), 
and the learning efficiency (lr), where the number of 
regression trees represents the number of basic learners, 
and the depth of the regression tree represents the 
number of nodes generated by the tree. The learning 
efficiency is set to prevent the model from overfitting to 
reduce the impact of each basic model on the final result. 

2.4 Performance evaluation 
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MSE (Mean Square Error) is a measure that reflects the 
degree of difference between the predicted value and the 
true value. And R2 is an indicator that measures the 
overall fit of the regression equation. The formula is as 
follows： 

                 (12) 

                     (13) 

In the formula:  represent true value;  represent 
predicted value;  represent average value; n represent 
the number of data samples. 

3  Experimental results and discussions 

 
(a) Relationship between aggregate size and  

water permeability rate 

 
(b) Relationship between aggregate standard deviation and 

water permeability rate 

 
(c) Relationship between roundness of aggregate and  

water permeability rate 

 
   (d) Relationship between binder materials wt% and water 

permeability rate 

Fig. 5 Relationship between characteristic parameters and water penetration rate

Fig. 5(a) shows the relationship between water 
permeability rate and particle size when A-J 12 kinds of 
sand are used as aggregate substrates. It can be seen that 
the particle size of the raw sand increases and the water 
penetration rate shows an upward trend as a whole, but it 
does not show a linear characteristic. This is because the 
aggregate has batch differences, including gradation 
differences and granular differences. The experiment of 
sieving sands of A, E and J was selected, and the results 
showed that the water permeability of the three sands of 
A, E and J increased as the particle size increased. Mix B 
sand and G sand separately with A sand to thoroughly 
explore the effect of aggregate particle size on water 
permeability. Compared with the results of screening 

sand A, with the addition of coarse particles (G sand), 
the preferred particle size increases, the water 
permeability rate is increasing; when fine particles (B 
sand) are added, the particle size is preferably reduced, 
and water permeability rate is reduced. The above results 
indicate that the aggregate particle size increases, the 
close packing between the particles decreases, the voids 
increase, and the water permeability rate also increases. 

The effect of particle size distribution on the 
permeability of sponge city pavement materials is shown 
in Fig. 5(b). From the relationship between the standard 
deviation of twelve kinds of raw sand and its water 
permeability rate, when the aggregate is single graded, 
i.e. the standard deviation is close to 0, the water 
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permeability rate is higher, but due to the influence of 
particle size, the experimental results still show a large 
difference. Using sieved sand for further experiments, 
when the aggregate particle size is the same, the water 
permeability rate decreases with the increase of the 
standard deviation. Reducing the distribution range of 
the aggregate particle size is beneficial to increase the 
material permeability rate. When the single gradation A 
sand is mixed into the continuous gradation L sand, the 
finer A sand is filled into the void of L sand when the 
amount of incorporation is small, so the stacking 
structure is more compact and the water permeability 
rate is reduced to the minimum; When a large amount of 
A sand incorporation becomes the dominant aggregate, 
the standard deviation decreases, the particle size 
distribution becomes narrow, the porosity increases, so 
the water permeability rate increases. 

The roundness is the most sensitive parameter among 
the shape parameters, which has a great influence on the 
material accumulation structure and the shape of the 
water flow channel. Fig. 5(c) shows the relationship 
between roundness and water permeability rate when 12 
kinds of sand are used as raw sand and sieved sand 
aggregate substrate. It can be seen from the figure that if 
the impact of aggregate particle size is not avoided, the 
roundness of the raw sand and the data of the water 
permeability rate are scattered and disorderly: the 
permeability rate of sand F with poor roundness (r=1.22) 
is 0.81cm/s, while that of another sand L with poor 
roundness (r=1.23) is only 0.10cm/s, indicating that the 
impact of the particle size on the water penetration rate 
at this time is much greater than the roundness. The 
results show that the roundness increases and the 
permeability rate of pavement materials decreases. The 
worse the roundness is, i.e., the larger the R value is, at 
this time, the aggregate particles are irregular, the 
accumulation gap is smaller when they are stacked, and 
the water permeability rate is lower. 

Fig. 5(d) shows the change of the water permeability 
rate of pavement materials with the amount of binder 
materials when A-L 12 kinds of sand are used as 
aggregate substrates. It is not difficult to see that with the 
increase of binder mixing amount, the permeable rate of 
pavement material decreases in different degrees. 
Among them, H sand used as aggregates had the largest 
decrease, the dosage increased from 5% to 7%, and the 
penetration rate decreased by 53.31%. The more the 
amount of binder material is added, the thicker the slurry 
layer coated on the surface of the aggregate is, the 
accumulation gap between the particles is reduced, and 
the water flow channel is also reduced, which ultimately 
leads to a decrease in the water permeability rate. 

In summary, the particle size, particle size 
distribution, shape parameters, and the amount of binder 
material all have a great influence on the permeability of 
sponge city pavement materials. The water permeability 
rate increases with different amplitudes as the particle 
size increases, the standard deviation decreases, the 
roundness decreases, and the binder content decreases. 

4 Establishment and verification of 
prediction model 
In order to select a suitable prediction model for the 
permeability of sponge city pavement materials, 
combined with the previous experimental data, by 
writing the Python code of the prediction model, the 
three prediction models of LASSO, SVR and GBR were 
established, and the three models were compared and 
optimized through regression analysis. The prediction 
model of water permeability of sponge city pavement 
materials that is the most suitable for the four 
performance parameters of particle size, particle size 
distribution, shape parameter and binder content is 
obtained. The process of building a model for predicting 
water permeability of sponge city pavement materials 
with different machine algorithms is shown in Fig. 6: 
Among them, the four performance parameters of 
particle size(d), relative standard deviation(w), 
roundness(r), and binder content(c) are independent 
variables, and the water permeability rate(v) is the 
dependent variable. 

 

 

Fig. 6 Workflow chart for model establishment 

The ratio of the test set to the training set is 
determined by studying the changes in MSE (mean 
square error), as shown in Fig. 7. It can be seen from Fig. 
7(a) that when the test set proportion is 20%, i.e. the 
training set proportion is 80%, both the MSE of the three 
models can be guaranteed to be in a low state, at the 
same time, it avoids the situation that the training set 
proportion is too small, resulting in large errors and 
insufficient accuracy. Debug the model, as shown in Fig. 
7(b)(c)(d), when the MSE of the prediction model is 
stable and the lowest, three model parameters are 
determined: alpha=0.001, C=102, n=1000, this The MSE 
values are 0.0297, 0.0240, and 0.0051, respectively. 
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Fig. 7 Determination of key parameters of three prediction 
models 

Table 3 lists the comparison results of predicted 
value and test value under the three models, and Fig. 8 
shows the fitting of predicted value and actual value of 
the three models when 20% data is the test set. It can be 
seen from the figure that the data points are more 

concentrated, and the GBR model has the best fit, R2 is 
0.92; the SVR model and the LASSO model have a poor 
fit, R2 is 0.61 and 0.53 respectively. Table 4 lists the 
variance analysis results of the three models' prediction 
fits. It can be seen that the differences in the permeation 
performance results of the prediction models: 
LASSO>SVR>GBR. Comparing the proportions of 
qualified data of the three models under different error 
ranges, the results are shown in Table 5. When the 
acceptable errors are the same, the number of qualified 
data in the prediction model is: GBR>SVR>LASSO. 
According to the analysis of Fig. 8, Table 4 and Table 5, 
the accuracy of the LASSO model after running under 
the data set is inferior to the other two models in all 
aspects. The fitting results between the actual value and 
the predicted value of the SVR model and the GBR 
model are: The error range is similar at 0.20 cm/s, and 
the GBR model is slightly better than the SVR model at 
0.01 and 0.03 cm/s, with 39.29% and 53.57%, 
respectively.  

 

Fig. 8 Three models predicted value-actual value fitting situation diagram 

Table 3 Comparison of test and predicted values under different models 

No. Test Predict1 Predict2 Predict3 No. Test Predict1 Predict2 Predict3 

1 0.454 0.438 0.444 0.453 15 0.254 0.321 0.286 0.298 

2 0.151 0.298 0.192 0.159 16 0.069 0.006 0.151 0.078 

3 0.398 0.426 0.349 0.437 17 0.280 0.380 0.293 0.386 

4 0.935 0.615 0.784 0.777 18 0.124 0.111 0.163 0.118 

5 0.208 0.263 0.237 0.206 19 0.148 0.124 0.213 0.118 

6 0.534 0.071 (0.004) 0.396 20 0.185 0.233 0.146 0.191 

7 0.061 (0.017) 0.153 0.071 21 0.045 (0.002) 0.126 0.054 

8 0.601 0.513 0.602 0.562 22 0.089 0.068 0.077 0.122 

9 0.484 0.042 0.003 0.343 23 0.134 0.198 0.176 0.138 

10 0.592 0.557 0.551 0.706 24 0.164 0.175 0.198 0.119 

11 0.217 0.303 0.244 0.201 25 0.205 0.181 0.168 0.155 

12 0.107 0.239 0.132 0.151 26 0.142 0.127 0.100 0.145 

13 0.146 0.185 0.136 0.156 27 0.401 0.013 0.110 0.304 

14 0.954 0.686 0.934 0.773 28 0.160 0.122 0.133 0.144 

Table 4 Analysis of variance of three models 

Variance 
analysis 

 DF 
Sum of 
square 

Mean square F value Prob>F 

Lasso Model 1 0.56 0.56 31.14 7.33E-6 
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Error 26 0.46 0.02 
Total 27 1.02    

SVR 
Model 1 0.83 0.83 

43.69 5.21E-7 
Error 26 0.5 0.02 
Total 27 1.33    

GBR 
Model 1 1.12 1.12 

325.51 3.33E-16 
Error 26 0.09 0 
Total 27 1.21    

Table 5 Proportion under three model error ranges 

Model LASSO Model SVR Model GBR Model 

Error Number Proportion Number Proportion Number Proportion 

≤0.01 1 3.57% 5 17.86% 11 39.29% 

≤0.03 10 35.71% 11 39.29% 15 53.57% 

≤0.05 15 53.57% 19 67.86% 21 75.00% 

≤0.10 21 75.00% 24 85.71% 22 78.57% 

≤0.20 25 89.29% 25 89.29% 28 100.00% 

Based on the comparison of MSE and R2, the highest 
accuracy is the GBR model, followed by the SVR model, 
and the LASSO model is not suitable for the selection of 
sponge city pavement material water permeable model 
under this data set. 

5 Conclusion 
In this paper, starting from the characteristic 
performance parameters of sponge city pavement 
materials, water permeability prediction models based on 
three machine learning algorithms of LASSO, SVR and 
GBR is constructed. The experimental data is used to 
predict the trained prediction model and the regression 
fitting results are obtained. Based on the comparative 
analysis of the prediction models based on different 
machine learning algorithms, we find the prediction 
model that is most suitable for the water permeability of 
sponge city pavement materials. 

(1) Based on the study of water permeability of 
sponge city pavement materials, experimental data is 
obtained through sample design and testing methods. In 
the study of the effect of material composition and 
structure on water permeability: The aggregate particle 
size increases and water permeability rate increases; the 
standard deviation decreases and the water permeability 
rate increases; the roundness decreases and the water 
permeability rate increases; the content of binder 
materials increases and the water permeability rate 
decreases. 

(2) Establishing prediction models based on different 
machine learning algorithms through the acquisition of 
preliminary experimental data. Among them, the GBR 
model water permeation performance prediction fitting 
effect is better than the SVR and LASSO models, the 
test value-predicted value MSE is 0.0051 and R2 is 0.92. 
GBR model can effectively predict the water 
permeability of sponge city pavement materials. 

There are many factors influencing the water 
permeability of sponge city pavement materials. This 
article is based on the test results and combined with 
machine learning methods to predict and analyze the 

representative four characteristic parameters (particle 
size, particle size distribution, shape parameter, binder 
content). More characteristic parameters need to be 
supplemented in future research, and the proportion and 
number of data sets will be expanded to make the 
performance prediction effect more universal, so as to 
improve the prediction accuracy and wider practicality 
of the water permeability of sponge city pavement 
materials.  
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