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Abstract. In the present paper we obtained 2 identities, which are satisfied 
by Riemann curvature tensor of generalized Kenmotsu manifolds. There was 
obtained an analytic expression for third structure tensor or tensor of f-
holomorphic sectional curvature of GK-manifold. We separated 2 classes of 
generalized Kenmotsu manifolds and collected their local characterization.  

1 Introduction 

Let M be a connected smooth manifold of (2n+1) dimension, 𝐶𝐶∞(𝑀𝑀) is the algebra of 
smooth functions on M, 𝒳𝒳(𝑀𝑀) - 𝐶𝐶∞ - module of smooth vector fields on M, d is the operator 
of exterior differentiation.  If M preserves Riemannian metric 〈∙,∙〉 , then corresponding 
Riemannian connection is expressed as . In the future, all manifolds, tensor fields (tensors, 
and similarly objects are assumed to be smooth of class 𝐶𝐶∞. 

Differential 1-form of maximal rank on an odd-dimensional Riemannian manifold 
produce a special differential-geometric structure called contact metric structure that 
naturally generalizes to the so-called almost contact metric structure. 

We recall [1] that a contact form or contact structure on an odd-dimensional 
manifold M, dim𝑀𝑀 = 2𝑛𝑛 + 1, is called 1-form  on M, which in each point of the manifold 
is 𝜂𝜂 ∧ (𝑑𝑑𝜂𝜂) ∧ …∧ (𝑑𝑑𝜂𝜂)⏟          

𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
≠ 0, i.e. 𝑟𝑟𝑟𝑟𝜂𝜂 = dim𝑀𝑀 is in each point of M.   Manifold with a fixed 

contact form on it is called a contact manifold [2]. Distributions ℒ = ker 𝜂𝜂 , dimℒ = 2𝑛𝑛, and 
ℳ = ker(𝑑𝑑𝜂𝜂) , dimℳ = 1 are determined on such manifold internally. It is easy to derive 
from Darboux theorem [1] that ℒ ∩ℳ = {0}, consequently 𝒳𝒳(𝑀𝑀) = ℒ⨁ℳ. Let us take 𝜉𝜉 ∈
ℳ such that 𝜂𝜂(𝜉𝜉) = 1. Then, it is possible to determine mutually complementing projections 
𝓂𝓂 = 𝜉𝜉⨂𝜂𝜂 and ℓ = 𝑖𝑖𝑑𝑑 − 𝜉𝜉⨂𝜂𝜂 on distributions ℳ and ℒ respectively. 

Let Riemannian metric h be fixed on M. Based on the metric ℎ|ℒ, it is not difficult 
to build metric 〈∙,∙〉  on ℒ  such that the operator 𝐼𝐼: ℒ → ℒ , which is determined with the 
identity 〈𝑋𝑋, 𝐼𝐼𝐼𝐼〉 = 𝑑𝑑𝜂𝜂(𝑋𝑋, 𝐼𝐼); 𝑋𝑋, 𝐼𝐼 ∈ ℒ, will be involutory, i.e. 𝐼𝐼2 = −𝑖𝑖𝑑𝑑, and thus 〈𝐼𝐼𝑋𝑋, 𝐼𝐼𝐼𝐼〉 =
〈𝑋𝑋, 𝐼𝐼〉 . Hence vector ξ, covector , operator 𝑓𝑓 = 𝐼𝐼 ∘ ℓ  and Riemannian metric 〈𝑋𝑋, 𝐼𝐼〉 =
〈ℓ𝑋𝑋, ℓ𝐼𝐼〉 + [ℎ(𝜉𝜉, 𝜉𝜉)]−1ℎ(𝓂𝓂𝑋𝑋,𝓂𝓂𝐼𝐼) on M, clearly, possess the following properties: 
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1) 𝑓𝑓(𝜉𝜉) = 0;  2) 𝜂𝜂 ∘ 𝑓𝑓 = 0;  3) 𝜂𝜂(𝜉𝜉) = 1;  4) 𝑓𝑓2 = −𝑖𝑖𝑖𝑖 + 𝜂𝜂⨂𝜉𝜉;  5) 〈𝑋𝑋, 𝑓𝑓𝑓𝑓〉 =
𝑖𝑖𝜂𝜂(𝑋𝑋, 𝑓𝑓);  6) 𝜂𝜂(𝑋𝑋) = 〈𝜉𝜉, 𝑋𝑋〉;  7) 〈𝑓𝑓𝑋𝑋, 𝑓𝑓𝑓𝑓〉 = 〈𝑋𝑋, 𝑓𝑓〉 − 𝜂𝜂(𝑋𝑋)𝜂𝜂(𝑓𝑓); 𝑋𝑋, 𝑓𝑓 ∈ 𝒳𝒳(𝑀𝑀).             (1.1) 

A contact manifold M that is provided with Riemannian metric 〈∙,∙〉, for which 
relations (1) are true, is called a contact metric manifold. 

The given construction makes the following definition natural. 
Definition 1.1 [3]. Almost a contact metric (or almost Gray's) structure on a 

manifold M is a set of {𝑔𝑔, 𝑓𝑓, 𝜉𝜉, 𝜂𝜂}  tensor fields on M, where 𝑔𝑔 = 〈∙,∙〉  is a (pseudo-) 
Riemannian metric, f is a tensor of (1.1) kind called structure endomorphism, ξ is a vector 
field, which is called characteristic,  is a differential 1-form, which is called a contact form 
of structure. Here: 

1. 𝑓𝑓(𝜉𝜉) = 0;   2. 𝜂𝜂 ∘ 𝑓𝑓 = 0;   3. 𝜂𝜂(𝜉𝜉) = 1;   4. 𝑓𝑓2 = −𝑖𝑖𝑖𝑖 + 𝜂𝜂⨂𝜉𝜉;   5. 〈𝑓𝑓𝑋𝑋, 𝑓𝑓𝑓𝑓〉 = 〈𝑋𝑋, 𝑓𝑓〉 −
𝜂𝜂(𝑋𝑋)𝜂𝜂(𝑓𝑓); 𝑋𝑋, 𝑓𝑓 ∈ 𝒳𝒳(𝑀𝑀).                   (1.2) 

Note that these relations are not independent; for example, (1.2:1) and (1.2:2) result 
from (1.2:3) and (1.2:4) [4]. In addition, it follows from (1.2:1), (1.2:3) and (1.2:5) that 
𝜂𝜂(𝑋𝑋) = 〈𝜉𝜉, 𝑋𝑋〉, 𝑋𝑋 ∈ 𝒳𝒳(𝑀𝑀); and from (1.2:2), (1.2:4) and1.2:5) that tensor Ω(𝑋𝑋, 𝑓𝑓) = 〈𝑋𝑋, Φ𝑓𝑓〉 
is skew-symmetric; this tensor is called the fundumental form of the structure. A triple 
{𝑓𝑓, 𝜉𝜉, 𝜂𝜂}, which meets the conditions (1.2:3) and1.2:4), is called an almost contact structure; 
it was introduced by S. Sasaki in [3] as such. Its assignment matches the assignment of G-
structure on M with the structural group 𝑹𝑹∗ × 𝐺𝐺𝐺𝐺(𝑛𝑛, 𝑪𝑪), where 𝑹𝑹∗ is a multiplicative group 
of positive real numbers. In fact, this is how J. Gray introduced it in 1959 [2]. Assignment of 
the almost contact structure {Φ, 𝜉𝜉, 𝜂𝜂} on manifold M induces a canonical hyper-distribution 
ℒ = ker 𝜂𝜂 on this manifold, called contact, which is invariant in relation to f. Due to (1.2:4), 
operator f induces an almost complex structure on ℒ. This gave grounds for J. Bouzon to 
assume an almost contact structure as an almost complex [5]. If {𝑔𝑔, 𝑓𝑓, 𝜉𝜉, 𝜂𝜂} is an almost 
contact metric structure, then by the virtue of (1.2:5), the pair {𝑓𝑓|ℒ, 𝑔𝑔|ℒ} sets an almost 
Hermitian structure on this hyper-distribution, due to which an almost contact metric 
structure can be naturally called a metric almost cocomplex structure. Obviously, its 
assignment equally matches the assignment of G-structure on M with a structural group 
{𝑒𝑒} × 𝑈𝑈(𝑛𝑛). We note that the concept of an almost contact structure has historically evolved 
in the following sequence: S.S. Chern [6] found that contact manifold admits G-structure 
with structural group {𝑒𝑒} × 𝑈𝑈(𝑛𝑛) ; J. Gray called manifolds that admit such structure as 
almost contact manifolds [2].  S. Sasaki noticed that such a G-structure generates a triple 
{𝑓𝑓, 𝜉𝜉, 𝜂𝜂} that has the above mentioned conditions (1.2:3) and (1.2:4), from which it is to derive 
(1.2:1) and (1.2:2). Moreover, based on an arbitrary Riemannian metric h on such manifold, 
he constructed Riemannian metric 〈𝑋𝑋, 𝑓𝑓〉 = ℎ(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑓𝑓) + ℎ(𝑓𝑓2𝑋𝑋, 𝑓𝑓2𝑓𝑓) + 𝜂𝜂(𝑋𝑋)𝜂𝜂(𝑓𝑓) , 
complementing {𝑓𝑓, 𝜉𝜉, 𝜂𝜂} to almost contact metric structure [3]. 

The most important example of almost contact metric structures, which largely 
determines their role in differential geometry, is the structure induced on the hypersurface N 
of the manifold M equipped with an almost Hermitian structure {𝐽𝐽, 〈∙,∙〉}. Let us recall this 
construction. Let 𝑛𝑛0 be a unit normal field to N. Then vector is 𝜉𝜉 = 𝐽𝐽(𝑛𝑛0) ∈ 𝒳𝒳(𝑁𝑁), where its 
orthogonal complement 𝔏𝔏 on N is invariant to J. We define in 𝒳𝒳(𝑁𝑁) a linear operator Φ =
𝐽𝐽|𝔏𝔏⨁0|𝔐𝔐, where 𝔐𝔐 is the linear hull of the vector ξ, and 1-form is 𝜂𝜂(𝑋𝑋) = 〈𝜉𝜉, 𝑋𝑋〉. Then 
{〈∙,∙〉, 𝑓𝑓, 𝜉𝜉, 𝜂𝜂} is the almost contact metric structure on N. In particular, such a structure is 
induced on the odd-dimensional sphere 𝑆𝑆2𝑛𝑛−1  considered as a hypersurface in the 
realification of the space 𝐶𝐶𝑛𝑛. This is the most important and, apparently, historically the first 
concrete example of such a structure. 

Then {𝑔𝑔 = 〈∙,∙〉, 𝑓𝑓, 𝜉𝜉, 𝜂𝜂} is the almost contact metric structure on manifold M. It is 
well-known [1] that in this case almost Hermitian structure {𝐽𝐽, ℎ} induces on the manifold 
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1) 𝑓𝑓(𝜉𝜉) = 0;  2) 𝜂𝜂 ∘ 𝑓𝑓 = 0;  3) 𝜂𝜂(𝜉𝜉) = 1;  4) 𝑓𝑓2 = −𝑖𝑖𝑖𝑖 + 𝜂𝜂⨂𝜉𝜉;  5) 〈𝑋𝑋, 𝑓𝑓𝑓𝑓〉 =
𝑖𝑖𝜂𝜂(𝑋𝑋, 𝑓𝑓);  6) 𝜂𝜂(𝑋𝑋) = 〈𝜉𝜉, 𝑋𝑋〉;  7) 〈𝑓𝑓𝑋𝑋, 𝑓𝑓𝑓𝑓〉 = 〈𝑋𝑋, 𝑓𝑓〉 − 𝜂𝜂(𝑋𝑋)𝜂𝜂(𝑓𝑓); 𝑋𝑋, 𝑓𝑓 ∈ 𝒳𝒳(𝑀𝑀).             (1.1) 

A contact manifold M that is provided with Riemannian metric 〈∙,∙〉, for which 
relations (1) are true, is called a contact metric manifold. 

The given construction makes the following definition natural. 
Definition 1.1 [3]. Almost a contact metric (or almost Gray's) structure on a 

manifold M is a set of {𝑔𝑔, 𝑓𝑓, 𝜉𝜉, 𝜂𝜂}  tensor fields on M, where 𝑔𝑔 = 〈∙,∙〉  is a (pseudo-) 
Riemannian metric, f is a tensor of (1.1) kind called structure endomorphism, ξ is a vector 
field, which is called characteristic,  is a differential 1-form, which is called a contact form 
of structure. Here: 

1. 𝑓𝑓(𝜉𝜉) = 0;   2. 𝜂𝜂 ∘ 𝑓𝑓 = 0;   3. 𝜂𝜂(𝜉𝜉) = 1;   4. 𝑓𝑓2 = −𝑖𝑖𝑖𝑖 + 𝜂𝜂⨂𝜉𝜉;   5. 〈𝑓𝑓𝑋𝑋, 𝑓𝑓𝑓𝑓〉 = 〈𝑋𝑋, 𝑓𝑓〉 −
𝜂𝜂(𝑋𝑋)𝜂𝜂(𝑓𝑓); 𝑋𝑋, 𝑓𝑓 ∈ 𝒳𝒳(𝑀𝑀).                   (1.2) 

Note that these relations are not independent; for example, (1.2:1) and (1.2:2) result 
from (1.2:3) and (1.2:4) [4]. In addition, it follows from (1.2:1), (1.2:3) and (1.2:5) that 
𝜂𝜂(𝑋𝑋) = 〈𝜉𝜉, 𝑋𝑋〉, 𝑋𝑋 ∈ 𝒳𝒳(𝑀𝑀); and from (1.2:2), (1.2:4) and1.2:5) that tensor Ω(𝑋𝑋, 𝑓𝑓) = 〈𝑋𝑋, Φ𝑓𝑓〉 
is skew-symmetric; this tensor is called the fundumental form of the structure. A triple 
{𝑓𝑓, 𝜉𝜉, 𝜂𝜂}, which meets the conditions (1.2:3) and1.2:4), is called an almost contact structure; 
it was introduced by S. Sasaki in [3] as such. Its assignment matches the assignment of G-
structure on M with the structural group 𝑹𝑹∗ × 𝐺𝐺𝐺𝐺(𝑛𝑛, 𝑪𝑪), where 𝑹𝑹∗ is a multiplicative group 
of positive real numbers. In fact, this is how J. Gray introduced it in 1959 [2]. Assignment of 
the almost contact structure {Φ, 𝜉𝜉, 𝜂𝜂} on manifold M induces a canonical hyper-distribution 
ℒ = ker 𝜂𝜂 on this manifold, called contact, which is invariant in relation to f. Due to (1.2:4), 
operator f induces an almost complex structure on ℒ. This gave grounds for J. Bouzon to 
assume an almost contact structure as an almost complex [5]. If {𝑔𝑔, 𝑓𝑓, 𝜉𝜉, 𝜂𝜂} is an almost 
contact metric structure, then by the virtue of (1.2:5), the pair {𝑓𝑓|ℒ, 𝑔𝑔|ℒ} sets an almost 
Hermitian structure on this hyper-distribution, due to which an almost contact metric 
structure can be naturally called a metric almost cocomplex structure. Obviously, its 
assignment equally matches the assignment of G-structure on M with a structural group 
{𝑒𝑒} × 𝑈𝑈(𝑛𝑛). We note that the concept of an almost contact structure has historically evolved 
in the following sequence: S.S. Chern [6] found that contact manifold admits G-structure 
with structural group {𝑒𝑒} × 𝑈𝑈(𝑛𝑛) ; J. Gray called manifolds that admit such structure as 
almost contact manifolds [2].  S. Sasaki noticed that such a G-structure generates a triple 
{𝑓𝑓, 𝜉𝜉, 𝜂𝜂} that has the above mentioned conditions (1.2:3) and (1.2:4), from which it is to derive 
(1.2:1) and (1.2:2). Moreover, based on an arbitrary Riemannian metric h on such manifold, 
he constructed Riemannian metric 〈𝑋𝑋, 𝑓𝑓〉 = ℎ(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑓𝑓) + ℎ(𝑓𝑓2𝑋𝑋, 𝑓𝑓2𝑓𝑓) + 𝜂𝜂(𝑋𝑋)𝜂𝜂(𝑓𝑓) , 
complementing {𝑓𝑓, 𝜉𝜉, 𝜂𝜂} to almost contact metric structure [3]. 

The most important example of almost contact metric structures, which largely 
determines their role in differential geometry, is the structure induced on the hypersurface N 
of the manifold M equipped with an almost Hermitian structure {𝐽𝐽, 〈∙,∙〉}. Let us recall this 
construction. Let 𝑛𝑛0 be a unit normal field to N. Then vector is 𝜉𝜉 = 𝐽𝐽(𝑛𝑛0) ∈ 𝒳𝒳(𝑁𝑁), where its 
orthogonal complement 𝔏𝔏 on N is invariant to J. We define in 𝒳𝒳(𝑁𝑁) a linear operator Φ =
𝐽𝐽|𝔏𝔏⨁0|𝔐𝔐, where 𝔐𝔐 is the linear hull of the vector ξ, and 1-form is 𝜂𝜂(𝑋𝑋) = 〈𝜉𝜉, 𝑋𝑋〉. Then 
{〈∙,∙〉, 𝑓𝑓, 𝜉𝜉, 𝜂𝜂} is the almost contact metric structure on N. In particular, such a structure is 
induced on the odd-dimensional sphere 𝑆𝑆2𝑛𝑛−1  considered as a hypersurface in the 
realification of the space 𝐶𝐶𝑛𝑛. This is the most important and, apparently, historically the first 
concrete example of such a structure. 

Then {𝑔𝑔 = 〈∙,∙〉, 𝑓𝑓, 𝜉𝜉, 𝜂𝜂} is the almost contact metric structure on manifold M. It is 
well-known [1] that in this case almost Hermitian structure {𝐽𝐽, ℎ} induces on the manifold 

 

𝑀𝑀 × 𝑅𝑅, where 𝐽𝐽 = 𝑓𝑓|𝔏𝔏⨁𝐽𝐽1, ℎ = 𝑔𝑔|𝔏𝔏⨁𝑔𝑔1, 𝐽𝐽1 is a canonical almost complex structure on the 
2-dimensional distribution 𝔐𝔐 × 𝑅𝑅, 𝑔𝑔1 is a metric on this distribution being a direct sum of 
metric 𝑔𝑔|𝔐𝔐 and the canonical metric on R. An almost contact structure {𝑓𝑓, 𝜉𝜉, 𝜂𝜂} is called 
normal if the structure {𝐽𝐽, ℎ} is integrable [4]; a necessary and sufficient condition for the 
structure to be normal has the form 𝑁𝑁 + 1

2
𝜉𝜉⨂𝑑𝑑𝜂𝜂 = 0, where N is the Nijenhuis tensor of the 

operator f [4]. 
Today, there active studies of the geometry of almost contact metric structures on 

manifolds. One of the most pressing issues in this section of geometry is the study of 
individual classes of almost contact metric manifolds. In 1972, Kenmotsu [7] introduced a 
class of almost contact metric structures characterized by an identity ∇𝑋𝑋(𝑓𝑓)𝑌𝑌 = 〈𝑓𝑓𝑓𝑓, 𝑌𝑌〉𝜉𝜉 −
𝜂𝜂(𝑌𝑌)𝑓𝑓𝑓𝑓;  𝑓𝑓, 𝑌𝑌 ∈ 𝒳𝒳(𝑀𝑀) . Kenmotsu structures, for example, naturally arise in the Tanno 
classification of connected almost contact metric manifolds such that automorphism group 
has maximum dimension [8]. They have a number of remarkable properties. For example, 
Kenmotsu structures are normal and integrable. They are not contact structures, so they are 
not Sasakian. There are known examples of Kenmotsu structures on odd-dimensional 
Lobachevsky spaces of curvature (−1). Such structures are obtained using the construction 
of warped product 𝑹𝑹 ×𝑓𝑓 𝑪𝑪𝑛𝑛 in the sense of Bishop and O'Neill [9] of complex Euclidean 
space and a real line, where 𝑓𝑓(𝑡𝑡) = 𝑐𝑐𝑒𝑒𝑡𝑡 (see [7]). 

Polarizing the identity characterizing the Kenmotsu manifolds, S.V. Umnova [10] 
identified in his thesis paper a class of almost contact metric manifolds; this class was a 
generalization of Kenmotsu manifolds and was called the class of generalized (in short, GK-
) Kenmotsu manifolds. In [10], it was proved that generalized Kenmotsu manifolds of 
constant curvature are Kenmotsu manifolds of constant curvature −1. 

In [11], this class of manifolds is called as a class of nearly Kenmotsu manifolds. 
The authors prove that a second-order symmetric closed recurrent tensor, recurrence covector 
of which annihilates the characteristic vector ξ, is a multiple of the metric tensor g. In 
addition, the authors consider the f-recurrent nearly Kenmotsu manifolds. It is proved that f-
recurrent nearly Kenmotsu manifolds are Einstein manifolds, and locally f-recurrent nearly 
Kenmotsu manifolds are manifolds of constant curvature −1. 

In [12], M.B. Banaru studied hypersurfaces of almost Hermitian manifolds of class 
𝑊𝑊3 with the Kenmotsu structure and obtained interesting properties of Kenmotsu manifolds. 

In our papers [13-14], Einstein's generalized Kenmotsu manifolds were studied; 
contact analogs of Gray identities were obtained, three classes of this type of manifolds were 
distinguished; a local characterization of the distinguished classes of manifolds was obtained. 
In [15], the curvature identities for the Riemannian curvature tensor were considered for the 
particular case of generalized Kenmotsu manifolds, called special generalized Kenmotsu 
manifolds of second kind [10]. 

The paper [16] examines the integrability properties of generalized Kenmotsu 
manifolds.  In this paper, we investigate GK-manifolds, the first fundamental distribution of 
which is completely integrable. It is shown that an almost Hermitian structure induced on 
integral manifolds of maximum dimension of the first distribution of a GK-manifold is nearly 
Kahlerian. Local structure of a GK-manifold with a closed contact form is obtained, 
expressions for the first and second structure tensors are given. The components of the 
Nijenhuis tensor of a GK-manifold are also calculated. Since defining the Nijenhuis tensor is 
equivalent to defining four tensors 𝑁𝑁(1), 𝑁𝑁(2), 𝑁𝑁(3), 𝑁𝑁(4), the geometric meaning of vanishing 
of these tensors is studied. Local structure of an integrable and normal GK-structure is 
obtained. It is proved that characteristic vector of GK-structure is not a Killing vector. 

It is clear from the given reviews of works on generalized Kenmotsu manifolds that 
the interest in studying of this class of manifolds does not fade, but rather grows. 
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In this paper, we continue the study of generalized Kenmotsu manifolds and 
investigate the geometry of the Riemannian curvature tensor for this class of manifolds. 

This paper is organized as follows. In paragraph 2, we give preliminary information 
needed in the further presentation and construct the space of the adjoint G-structure. In 
paragraph 3, we give a definition of generalized Kenmotsu manifolds, provide a complete 
group of structure equations, and give the components of the Riemann-Christoffel tensor on 
space of the adjoint G-structure. In paragraph 4 we, using the procedure of restoring the 
identity of [17- 18], obtain some identities, which are satisfied by the Riemannian curvature 
tensor of generalized Kenmotsu manifolds and, on their basis, we separate two classes of 
generalized Kenmotsu manifolds. In addition, we get a local characterization of these classes. 

2 Preliminaries 

Let M be a smooth manifold of dimension 2𝑛𝑛 + 1, 𝒳𝒳(𝑀𝑀), C∞ be a module of smooth vector 
fields on manifold M. Further, all manifolds, tensor fields and similarly objects are assumed 
to be smooth of class C∞. 

Definition 2.1 ([17-18]). Almost contact structure on a manifold M is a triple 
(𝜂𝜂, 𝜉𝜉, 𝑓𝑓) tensor fields on this manifold, where η is a differential 1-form called the contact 
form of structure, 𝜉𝜉 is a vector field called characteristic, f is endomorphism of module 𝒳𝒳(𝑀𝑀) 
called the structure endomorphism. Here 

1) 𝜂𝜂(𝜉𝜉) = 1;   2) 𝜂𝜂 ∘ 𝑓𝑓 = 0;   3) 𝑓𝑓(𝜉𝜉) = 0;   4) 𝑓𝑓2 = −𝑖𝑖𝑖𝑖 + 𝜂𝜂 ⊗ 𝜉𝜉.             (2.1) 

Moreover if Riemannian structure 𝑔𝑔 = 〈⋅,⋅〉 is fixed on M such that 

〈𝑓𝑓𝑓𝑓, f𝑌𝑌〉 = 〈X, Y〉 − 𝜂𝜂(𝑓𝑓)𝜂𝜂(𝑌𝑌), 𝑓𝑓, 𝑌𝑌 ∈ 𝒳𝒳(𝑀𝑀),              (2.2) 

four (𝜂𝜂, 𝜉𝜉, 𝑓𝑓, 𝑔𝑔 = 〈∙,∙〉) is called an almost contact metric (AC-) structure. Manifold with a 
fixed almost contact (metric) structure is called an almost contact (metric (AC-)) manifold. 

Skew-symmetric tensor Ω(𝑓𝑓, 𝑌𝑌) = 〈𝑓𝑓, 𝑓𝑓𝑌𝑌〉, 𝑓𝑓, 𝑌𝑌 ∈ 𝒳𝒳(𝑀𝑀) is called the fundamental form 
of AC-structure ([17], [18]). 

Let (𝜂𝜂, 𝜉𝜉, 𝑓𝑓, 𝑔𝑔) be the almost contact metric structure on manifold 𝑀𝑀2𝑛𝑛+1.  In the module 
𝒳𝒳(𝑀𝑀), two mutually complementary projections 𝓂𝓂 = 𝜂𝜂 ⊗ 𝜉𝜉 and ℓ = 𝑖𝑖𝑖𝑖 − 𝓂𝓂 = −𝑓𝑓2  are 
defined internally [18]; thus, 𝒳𝒳(𝑀𝑀) = ℒ ⊕ ℳ, where ℒ = 𝐼𝐼𝐼𝐼(Φ) = 𝑘𝑘𝑘𝑘𝑘𝑘𝜂𝜂 is the so-called 
contact (or first fundamental) distribution, 𝑖𝑖𝑖𝑖𝐼𝐼ℒ = 2𝑛𝑛, ℳ = 𝐼𝐼𝐼𝐼𝓂𝓂 = 𝑘𝑘𝑘𝑘𝑘𝑘(𝑓𝑓) = 𝐿𝐿(𝜉𝜉) is the 
linear hull of structure vector or the so-called second fundamental distribution (moreover, ℓ 
and 𝓂𝓂 are projections onto submodules ℒ, ℳ respectively) [17-18]. Obviously, distribution 
ℒ  and ℳ  are invariant to f and mutually orthogonal. It is also clear that 𝑓𝑓2 =
−𝑖𝑖𝑖𝑖, 〈𝑓𝑓𝑓𝑓, 𝑓𝑓𝑌𝑌〉 = 〈𝑓𝑓, 𝑌𝑌〉, 𝑓𝑓, 𝑌𝑌 ∈ 𝒳𝒳(𝑀𝑀) , where 𝑓𝑓 = 𝑓𝑓|ℒ . Consequently, {𝑓𝑓𝑝𝑝, 𝑔𝑔𝑝𝑝|ℒ}  is the 
Hermitian structure on manifold ℒ𝑝𝑝. 

Complexification 𝒳𝒳(𝑀𝑀)𝐂𝐂 of the module 𝒳𝒳(𝑀𝑀) decomposes into a direct sum 𝒳𝒳(𝑀𝑀)𝐂𝐂 =
𝐷𝐷𝑓𝑓

√−1 ⊕ 𝐷𝐷𝑓𝑓
−√−1 ⊕ 𝐷𝐷𝑓𝑓

0 of proper subspaces of structure endomorphism f, corresponding to 

proper values √−1, √−1 and 0 respectively. Moreover, the projections onto the summands 
of this direct sum will, respectively, be endomorphisms [17-18] 𝜋𝜋 = 𝜎𝜎 ∘ ℓ = − 1

2
(𝑓𝑓2 +

√−1𝑓𝑓), �̅�𝜋 = 𝜎𝜎 ∘ ℓ = 1
2

(−𝑓𝑓2 + √−1𝑓𝑓), 𝓂𝓂 = 𝑖𝑖𝑖𝑖 + 𝑓𝑓2 , where 𝜎𝜎 = 1
2

(𝑖𝑖𝑖𝑖 − √−1𝑓𝑓), 𝜎𝜎 =
1
2

(𝑖𝑖𝑖𝑖 + √−1𝑓𝑓). 

The mappings 𝜎𝜎𝑝𝑝: ℒ𝑝𝑝 ⟶ 𝐷𝐷𝑓𝑓
√−1  and 𝜎𝜎𝑝𝑝: ℒ𝑝𝑝 ⟶ 𝐷𝐷𝑓𝑓

−√−1  are, respectively, isomorphisms 
and anti-isomorphisms of Hermitian spaces. Therefore, to each point 𝑝𝑝 ∈ 𝑀𝑀2𝑛𝑛+1 one can 
attach a family of frames of the space 𝑇𝑇𝑝𝑝(𝑀𝑀)𝐶𝐶  of the form (𝑝𝑝, 𝜀𝜀0, 𝜀𝜀1, … , 𝜀𝜀𝑛𝑛, 𝜀𝜀1̂, … , 𝜀𝜀�̂�𝑛), where 

4

E3S Web of Conferences 244, 09005 (2021) https://doi.org/10.1051/e3sconf/202124409005
EMMFT-2020



 

In this paper, we continue the study of generalized Kenmotsu manifolds and 
investigate the geometry of the Riemannian curvature tensor for this class of manifolds. 

This paper is organized as follows. In paragraph 2, we give preliminary information 
needed in the further presentation and construct the space of the adjoint G-structure. In 
paragraph 3, we give a definition of generalized Kenmotsu manifolds, provide a complete 
group of structure equations, and give the components of the Riemann-Christoffel tensor on 
space of the adjoint G-structure. In paragraph 4 we, using the procedure of restoring the 
identity of [17- 18], obtain some identities, which are satisfied by the Riemannian curvature 
tensor of generalized Kenmotsu manifolds and, on their basis, we separate two classes of 
generalized Kenmotsu manifolds. In addition, we get a local characterization of these classes. 

2 Preliminaries 

Let M be a smooth manifold of dimension 2𝑛𝑛 + 1, 𝒳𝒳(𝑀𝑀), C∞ be a module of smooth vector 
fields on manifold M. Further, all manifolds, tensor fields and similarly objects are assumed 
to be smooth of class C∞. 

Definition 2.1 ([17-18]). Almost contact structure on a manifold M is a triple 
(𝜂𝜂, 𝜉𝜉, 𝑓𝑓) tensor fields on this manifold, where η is a differential 1-form called the contact 
form of structure, 𝜉𝜉 is a vector field called characteristic, f is endomorphism of module 𝒳𝒳(𝑀𝑀) 
called the structure endomorphism. Here 

1) 𝜂𝜂(𝜉𝜉) = 1;   2) 𝜂𝜂 ∘ 𝑓𝑓 = 0;   3) 𝑓𝑓(𝜉𝜉) = 0;   4) 𝑓𝑓2 = −𝑖𝑖𝑖𝑖 + 𝜂𝜂 ⊗ 𝜉𝜉.             (2.1) 

Moreover if Riemannian structure 𝑔𝑔 = 〈⋅,⋅〉 is fixed on M such that 

〈𝑓𝑓𝑓𝑓, f𝑌𝑌〉 = 〈X, Y〉 − 𝜂𝜂(𝑓𝑓)𝜂𝜂(𝑌𝑌), 𝑓𝑓, 𝑌𝑌 ∈ 𝒳𝒳(𝑀𝑀),              (2.2) 

four (𝜂𝜂, 𝜉𝜉, 𝑓𝑓, 𝑔𝑔 = 〈∙,∙〉) is called an almost contact metric (AC-) structure. Manifold with a 
fixed almost contact (metric) structure is called an almost contact (metric (AC-)) manifold. 

Skew-symmetric tensor Ω(𝑓𝑓, 𝑌𝑌) = 〈𝑓𝑓, 𝑓𝑓𝑌𝑌〉, 𝑓𝑓, 𝑌𝑌 ∈ 𝒳𝒳(𝑀𝑀) is called the fundamental form 
of AC-structure ([17], [18]). 

Let (𝜂𝜂, 𝜉𝜉, 𝑓𝑓, 𝑔𝑔) be the almost contact metric structure on manifold 𝑀𝑀2𝑛𝑛+1.  In the module 
𝒳𝒳(𝑀𝑀), two mutually complementary projections 𝓂𝓂 = 𝜂𝜂 ⊗ 𝜉𝜉 and ℓ = 𝑖𝑖𝑖𝑖 − 𝓂𝓂 = −𝑓𝑓2  are 
defined internally [18]; thus, 𝒳𝒳(𝑀𝑀) = ℒ ⊕ ℳ, where ℒ = 𝐼𝐼𝐼𝐼(Φ) = 𝑘𝑘𝑘𝑘𝑘𝑘𝜂𝜂 is the so-called 
contact (or first fundamental) distribution, 𝑖𝑖𝑖𝑖𝐼𝐼ℒ = 2𝑛𝑛, ℳ = 𝐼𝐼𝐼𝐼𝓂𝓂 = 𝑘𝑘𝑘𝑘𝑘𝑘(𝑓𝑓) = 𝐿𝐿(𝜉𝜉) is the 
linear hull of structure vector or the so-called second fundamental distribution (moreover, ℓ 
and 𝓂𝓂 are projections onto submodules ℒ, ℳ respectively) [17-18]. Obviously, distribution 
ℒ  and ℳ  are invariant to f and mutually orthogonal. It is also clear that 𝑓𝑓2 =
−𝑖𝑖𝑖𝑖, 〈𝑓𝑓𝑓𝑓, 𝑓𝑓𝑌𝑌〉 = 〈𝑓𝑓, 𝑌𝑌〉, 𝑓𝑓, 𝑌𝑌 ∈ 𝒳𝒳(𝑀𝑀) , where 𝑓𝑓 = 𝑓𝑓|ℒ . Consequently, {𝑓𝑓𝑝𝑝, 𝑔𝑔𝑝𝑝|ℒ}  is the 
Hermitian structure on manifold ℒ𝑝𝑝. 

Complexification 𝒳𝒳(𝑀𝑀)𝐂𝐂 of the module 𝒳𝒳(𝑀𝑀) decomposes into a direct sum 𝒳𝒳(𝑀𝑀)𝐂𝐂 =
𝐷𝐷𝑓𝑓

√−1 ⊕ 𝐷𝐷𝑓𝑓
−√−1 ⊕ 𝐷𝐷𝑓𝑓

0 of proper subspaces of structure endomorphism f, corresponding to 

proper values √−1, √−1 and 0 respectively. Moreover, the projections onto the summands 
of this direct sum will, respectively, be endomorphisms [17-18] 𝜋𝜋 = 𝜎𝜎 ∘ ℓ = − 1

2
(𝑓𝑓2 +

√−1𝑓𝑓), �̅�𝜋 = 𝜎𝜎 ∘ ℓ = 1
2

(−𝑓𝑓2 + √−1𝑓𝑓), 𝓂𝓂 = 𝑖𝑖𝑖𝑖 + 𝑓𝑓2 , where 𝜎𝜎 = 1
2

(𝑖𝑖𝑖𝑖 − √−1𝑓𝑓), 𝜎𝜎 =
1
2

(𝑖𝑖𝑖𝑖 + √−1𝑓𝑓). 

The mappings 𝜎𝜎𝑝𝑝: ℒ𝑝𝑝 ⟶ 𝐷𝐷𝑓𝑓
√−1  and 𝜎𝜎𝑝𝑝: ℒ𝑝𝑝 ⟶ 𝐷𝐷𝑓𝑓

−√−1  are, respectively, isomorphisms 
and anti-isomorphisms of Hermitian spaces. Therefore, to each point 𝑝𝑝 ∈ 𝑀𝑀2𝑛𝑛+1 one can 
attach a family of frames of the space 𝑇𝑇𝑝𝑝(𝑀𝑀)𝐶𝐶  of the form (𝑝𝑝, 𝜀𝜀0, 𝜀𝜀1, … , 𝜀𝜀𝑛𝑛, 𝜀𝜀1̂, … , 𝜀𝜀�̂�𝑛), where 

 

𝜀𝜀𝑎𝑎 = √2𝜎𝜎𝑝𝑝(𝑒𝑒𝑎𝑎), 𝜀𝜀�̂�𝑎 = √2𝜎𝜎𝑝𝑝(𝑒𝑒𝑎𝑎), 𝜀𝜀0 = 𝜉𝜉𝑝𝑝; where {𝑒𝑒𝑎𝑎} is an orthonormal basis of Hermitian 
space ℒ𝑝𝑝. This frame is called an A-frame [18]. It is easy to see that matrices of the tensor 
components 𝑓𝑓𝑝𝑝 and 𝑔𝑔𝑝𝑝 in the A-frame have the form: 

(𝑓𝑓𝑗𝑗𝑖𝑖) = (
0 0 0
0 √−1𝐼𝐼𝑛𝑛 0
0 0 −√−1𝐼𝐼𝑛𝑛

) , (𝑔𝑔𝑖𝑖𝑗𝑗) = (
1 0 0
0 0 𝐼𝐼𝑛𝑛
0 𝐼𝐼𝑛𝑛 0

),              (2.3) 

where 𝐼𝐼𝑛𝑛 is the identity matrix of size n. It is well-known [17, 18] that the set of such frames 
defines the G-structure on M with the structure group {1} × 𝑈𝑈(𝑛𝑛) represented by matrices of 

the form (
1 0 0
0 𝐴𝐴 0
0 0 𝐴𝐴

), where 𝐴𝐴 ∈ 𝑈𝑈(𝑛𝑛). This G-structure is called adjoint [17, 18]. 

Let (𝑀𝑀2𝑛𝑛+1, Φ, 𝜉𝜉, 𝜂𝜂, 𝑔𝑔 = 〈∙,∙〉) be an almost contact metric manifold. Let us agree 
that throughout the entire paper, unless otherwise stated, the indices 𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙, … take values 
from 1 to 2𝑛𝑛, the indices 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑑𝑑, … take values from 1 to n, and let �̂�𝑎 = 𝑎𝑎 + 𝑛𝑛, �̂̂�𝑎 = 𝑎𝑎, 0̂ =
0. Let (𝑈𝑈, 𝜑𝜑) be a local chart on the manifold M. According to the Main Theorem of Tensor 
Analysis [17, p. 243], the assignment of a structural endomorphism f and Riemannian 
structure 𝑔𝑔 = 〈⋅,⋅〉 on the manifold M induces the assignment on the total space BM of a frame 
bundle over M of a system of functions {𝑓𝑓𝑗𝑗𝑖𝑖}, {𝑔𝑔𝑖𝑖𝑗𝑗}, satisfying in the coordinate neighborhood 
𝑊𝑊 = 𝜋𝜋−1(𝑈𝑈) ⊂ 𝐵𝐵𝑀𝑀 the system of differential equations of the form 

𝑑𝑑𝑓𝑓𝑗𝑗𝑖𝑖 + 𝑓𝑓𝑗𝑗𝑘𝑘𝜃𝜃𝑘𝑘𝑖𝑖 − 𝑓𝑓𝑘𝑘𝑖𝑖𝜃𝜃𝑗𝑗𝑘𝑘 = 𝑓𝑓𝑗𝑗,𝑘𝑘𝑖𝑖 𝜔𝜔𝑘𝑘, 𝑑𝑑𝑔𝑔𝑖𝑖𝑗𝑗 − 𝑔𝑔𝑘𝑘𝑗𝑗𝜃𝜃𝑖𝑖𝑘𝑘 − 𝑔𝑔𝑖𝑖𝑘𝑘𝜃𝜃𝑗𝑗𝑘𝑘 = 𝑔𝑔𝑖𝑖𝑗𝑗,𝑘𝑘𝜔𝜔𝑘𝑘                     (2.4) 

where {𝜔𝜔𝑖𝑖}, {𝜃𝜃𝑗𝑗𝑖𝑖}  are the components of solder form and Riemannian connection , 
respectively, 𝑓𝑓𝑗𝑗,𝑘𝑘𝑖𝑖 , 𝑔𝑔𝑖𝑖𝑗𝑗,𝑘𝑘 are the components of covariant differential of tensors 𝑓𝑓 and g in this 
connection. In addition, by the definition of Riemannian connection ∇𝑔𝑔 = 0 and, therefore, 

𝑔𝑔𝑖𝑖𝑗𝑗,𝑘𝑘 = 0.                             (2.5) 

Relations (2.4) on the space of the adjoint G-structure can be written in the form [17-18] 

𝑓𝑓𝑏𝑏,𝑘𝑘𝑎𝑎 = 0, 𝑓𝑓�̂�𝑏,𝑘𝑘
�̂�𝑎 = 0, 𝑓𝑓0,𝑘𝑘0 = 0, 

𝜃𝜃�̂�𝑏
𝑎𝑎 =

√−1
2 𝑓𝑓�̂�𝑏,𝑘𝑘

𝑎𝑎 𝜔𝜔𝑘𝑘, 𝜃𝜃𝑏𝑏�̂�𝑎 = −
√−1
2 𝑓𝑓𝑏𝑏,𝑘𝑘�̂�𝑎 𝜔𝜔𝑘𝑘, 

𝜃𝜃0𝑎𝑎 = √−1𝑓𝑓0,𝑘𝑘𝑎𝑎 𝜔𝜔𝑘𝑘, 𝜃𝜃0�̂�𝑎 = −√−1𝑓𝑓0,𝑘𝑘�̂�𝑎 𝜔𝜔𝑘𝑘,              (2.6) 

𝜃𝜃𝑎𝑎0 = −√−1𝑓𝑓𝑎𝑎,𝑘𝑘0 𝜔𝜔𝑘𝑘, 𝜃𝜃�̂�𝑎0 = √−1𝑓𝑓�̂�𝑎,𝑘𝑘0 𝜔𝜔𝑘𝑘, 
𝜃𝜃𝑗𝑗𝑖𝑖 + 𝜃𝜃�̂�𝑗�̂�𝑖 = 0, 𝜃𝜃00 = 0. 

On top of that, note that, since the corresponding forms and tensors are real, 𝜔𝜔𝑖𝑖̅̅ ̅ = 𝜔𝜔�̂�𝑖, 𝜃𝜃𝑗𝑗�̅�𝑖 =
𝜃𝜃�̂�𝑗�̂�𝑖, ∇𝑓𝑓𝑗𝑗,𝑘𝑘𝑖𝑖̅̅ ̅̅ ̅̅ = ∇𝑓𝑓�̂�𝑗,�̂�𝑘

�̂�𝑖 , where 𝑡𝑡 → 𝑡𝑡̅ is the complex conjugation operator. 

The first group of structure equations for Riemannian connection 𝑑𝑑𝜔𝜔𝑖𝑖 = −𝜃𝜃𝑗𝑗𝑖𝑖 ∧ 𝜔𝜔𝑗𝑗 on the 
space of the adjoint G-structure of an almost contact metric manifold, can be written in the 
following form, called the first group of structure equations for an almost contact metric 
manifold [17-18]: 

𝑑𝑑𝜔𝜔 = 𝐶𝐶𝑎𝑎𝑏𝑏𝜔𝜔𝑎𝑎 ∧ 𝜔𝜔𝑏𝑏 + 𝐶𝐶𝑎𝑎𝑏𝑏𝜔𝜔𝑎𝑎 ∧ 𝜔𝜔𝑏𝑏 + 𝐶𝐶𝑎𝑎𝑏𝑏𝜔𝜔𝑎𝑎 ∧ 𝜔𝜔𝑏𝑏 + 𝐶𝐶𝑎𝑎𝜔𝜔 ∧ 𝜔𝜔𝑎𝑎 + 𝐶𝐶𝑎𝑎𝜔𝜔 ∧ 𝜔𝜔𝑎𝑎; 
𝑑𝑑𝜔𝜔𝑎𝑎 = −𝜃𝜃𝑏𝑏𝑎𝑎 ∧ 𝜔𝜔𝑏𝑏 + 𝐵𝐵𝑎𝑎𝑏𝑏

𝑐𝑐𝜔𝜔𝑐𝑐 ∧ 𝜔𝜔𝑏𝑏 + 𝐵𝐵𝑎𝑎𝑏𝑏𝑐𝑐𝜔𝜔𝑏𝑏 ∧ 𝜔𝜔𝑐𝑐 + 𝐵𝐵𝑎𝑎𝑏𝑏𝜔𝜔 ∧ 𝜔𝜔𝑏𝑏 + 𝐵𝐵𝑎𝑎
𝑏𝑏𝜔𝜔 ∧ 𝜔𝜔𝑏𝑏;          (2.7) 

𝑑𝑑𝜔𝜔𝑎𝑎 = 𝜃𝜃𝑎𝑎𝑏𝑏 ∧ 𝜔𝜔𝑏𝑏 + 𝐵𝐵𝑎𝑎𝑏𝑏𝑐𝑐𝜔𝜔𝑐𝑐 ∧ 𝜔𝜔𝑏𝑏 + 𝐵𝐵𝑎𝑎𝑏𝑏𝑐𝑐𝜔𝜔𝑏𝑏 ∧ 𝜔𝜔𝑐𝑐 + 𝐵𝐵𝑎𝑎𝑏𝑏𝜔𝜔 ∧ 𝜔𝜔𝑏𝑏 + 𝐵𝐵𝑎𝑎𝑏𝑏𝜔𝜔 ∧ 𝜔𝜔𝑏𝑏 , 
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where 𝜔𝜔 = 𝜔𝜔0 = 𝜋𝜋∗(𝜂𝜂);  𝜋𝜋 is the natural projection of the space of the adjoint G-structure 
on the manifold M,  𝜔𝜔𝑖𝑖 = 𝑔𝑔𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖 , 

𝐵𝐵𝑎𝑎𝑎𝑎
𝑐𝑐 = −

√−1
2 𝑓𝑓�̂�𝑎,𝑐𝑐

𝑎𝑎 , 𝐵𝐵𝑎𝑎𝑎𝑎
𝑐𝑐 =

√−1
2 𝑓𝑓𝑎𝑎,𝑐𝑐̂

�̂�𝑎 , 𝐵𝐵𝑎𝑎𝑎𝑎𝑐𝑐 =
√−1

2 𝑓𝑓�̂�𝑎,𝑐𝑐̂
𝑎𝑎 , 

𝐵𝐵𝑎𝑎𝑎𝑎𝑐𝑐 = −
√−1

2 𝑓𝑓𝑎𝑎,𝑐𝑐
�̂�𝑎 , 𝐵𝐵𝑎𝑎

𝑎𝑎 = √−1𝑓𝑓0,𝑎𝑎
𝑎𝑎 , 𝐵𝐵𝑎𝑎

𝑎𝑎 = −√−1𝑓𝑓0,�̂�𝑎
�̂�𝑎 , 

        𝐵𝐵𝑎𝑎𝑎𝑎 = √−1 (𝑓𝑓0,�̂�𝑎
𝑎𝑎 − 1

2
𝑓𝑓�̂�𝑎,0

𝑎𝑎 ) , 𝐵𝐵𝑎𝑎𝑎𝑎 = −√−1 (𝑓𝑓0,𝑎𝑎
�̂�𝑎 − 1

2
𝑓𝑓𝑎𝑎,0

�̂�𝑎 ),                  (2.8) 

𝐶𝐶𝑎𝑎𝑎𝑎 = √−1𝑓𝑓[�̂�𝑎,�̂�𝑎]
0 , 𝐶𝐶𝑎𝑎𝑎𝑎 = −√−1𝑓𝑓[𝑎𝑎,𝑎𝑎]

0 , 𝐶𝐶𝑎𝑎
𝑎𝑎 = −√−1(𝑓𝑓�̂�𝑎,𝑎𝑎

0 + 𝑓𝑓𝑎𝑎,�̂�𝑎
0 ) = 𝐵𝐵𝑎𝑎

𝑎𝑎 − 𝐵𝐵𝑎𝑎
𝑎𝑎, 

𝐶𝐶𝑎𝑎 = −√−1𝑓𝑓�̂�𝑎,0
0 , 𝐶𝐶𝑎𝑎 = √−1𝑓𝑓𝑎𝑎,0

0 . 

Let us introduce the following notation [17] 

𝐶𝐶𝑎𝑎𝑎𝑎𝑐𝑐 = √−1
2

𝑓𝑓�̂�𝑎,𝑐𝑐̂
𝑎𝑎 , 𝐶𝐶𝑎𝑎𝑎𝑎𝑐𝑐 = − √−1

2
𝑓𝑓𝑎𝑎,𝑐𝑐

�̂�𝑎 , 𝐹𝐹𝑎𝑎𝑎𝑎 = √−1𝑓𝑓�̂�𝑎,�̂�𝑎
0 , 𝐹𝐹𝑎𝑎𝑎𝑎 = −√−1𝑓𝑓𝑎𝑎,𝑎𝑎

0 .            (2.9) 

Consider the following function families on the space of adjoint G-structure [17]: 
• 𝐵𝐵 = {𝐵𝐵𝑖𝑖

𝑖𝑖𝑗𝑗}; 𝐵𝐵𝑎𝑎
�̂�𝑎𝑐𝑐 = 𝐵𝐵𝑎𝑎𝑎𝑎

𝑐𝑐, 𝐵𝐵�̂�𝑎
𝑎𝑎𝑐𝑐̂ = 𝐵𝐵𝑎𝑎𝑎𝑎

𝑐𝑐; all other components of family B are zero; 
• 𝐶𝐶 = {𝐶𝐶𝑖𝑖

𝑖𝑖𝑗𝑗};  𝐶𝐶𝑎𝑎
�̂�𝑎𝑐𝑐̂ = 𝐶𝐶𝑎𝑎𝑎𝑎𝑐𝑐;  𝐶𝐶�̂�𝑎

𝑎𝑎𝑐𝑐 = 𝐶𝐶𝑎𝑎𝑎𝑎𝑐𝑐; all other components of family C are zero; 
• 𝐷𝐷 = {𝐷𝐷𝑖𝑖

𝑖𝑖};  𝐷𝐷𝑎𝑎
�̂�𝑎 = 𝐵𝐵𝑎𝑎𝑎𝑎; 𝐷𝐷�̂�𝑎

𝑎𝑎 = 𝐵𝐵𝑎𝑎𝑎𝑎; all other components of family D are zero; 
• 𝐸𝐸 = {𝐸𝐸𝑖𝑖

𝑖𝑖};  𝐸𝐸𝑎𝑎
𝑎𝑎 = 𝐵𝐵𝑎𝑎

𝑎𝑎; 𝐸𝐸�̂�𝑎
�̂�𝑎 = 𝐵𝐵𝑎𝑎

𝑎𝑎; all other components of family D are zero; 
• 𝐹𝐹 = {𝐹𝐹𝑖𝑖

𝑖𝑖};  𝐹𝐹𝑎𝑎
�̂�𝑎 = 𝐹𝐹𝑎𝑎𝑎𝑎; 𝐹𝐹�̂�𝑎

𝑎𝑎 = 𝐹𝐹𝑎𝑎𝑎𝑎; all other components of family F are zero; 
• 𝐺𝐺 = {𝐺𝐺𝑖𝑖};  𝐺𝐺𝑎𝑎 = 𝐶𝐶𝑎𝑎; 𝐺𝐺𝑎𝑎 = 𝐶𝐶𝑎𝑎; all other components of family D are zero. 

These systems of functions define tensors of the corresponding kinds on the manifold M; 
these tensors are called the first, second,.., sixth structure tensors of the AC-structure, 
respectively. The following takes place 

Proposition 2.1 [17]. Structure tensors of the AC-structure have the following properties: 

1) 𝑓𝑓 ∘ 𝐵𝐵(𝑋𝑋, 𝑌𝑌) = −𝐵𝐵(𝑓𝑓𝑋𝑋, 𝑌𝑌) = 𝐵𝐵(𝑋𝑋, 𝑓𝑓𝑌𝑌); 
2) 〈〈𝐵𝐵(𝑋𝑋, 𝑌𝑌), 𝑍𝑍〉〉 + 〈〈𝑌𝑌, 𝐵𝐵(𝑋𝑋, 𝑍𝑍)〉〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0; 

3) 𝑓𝑓 ∘ 𝐶𝐶(𝑋𝑋, 𝑌𝑌) = −𝐶𝐶(𝑓𝑓𝑋𝑋, 𝑌𝑌) = −𝐶𝐶(𝑋𝑋, 𝑓𝑓𝑌𝑌); 
4) 〈〈𝐶𝐶(𝑋𝑋, 𝑌𝑌), 𝑍𝑍〉〉 + 〈〈𝑌𝑌, 𝐶𝐶(𝑋𝑋, 𝑍𝑍)〉〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0; 

5) 𝑓𝑓 ∘ 𝐷𝐷 = −𝐷𝐷 ∘ 𝑓𝑓; 
6) 𝑓𝑓 ∘ 𝐸𝐸 = 𝐸𝐸 ∘ 𝑓𝑓; 

7) 𝑓𝑓 ∘ 𝐹𝐹 = −𝐹𝐹 ∘ 𝑓𝑓; 
8) 𝐺𝐺 ∈ ℒ;  were 〈〈𝑋𝑋, 𝑌𝑌〉〉 = 〈𝑋𝑋, 𝑌𝑌〉 + √−1〈𝑋𝑋, 𝑓𝑓𝑌𝑌〉, (𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝒳𝒳(𝑀𝑀)). 

3 Generalized Kenmotsu manifolds 

Let (𝑀𝑀2𝑛𝑛+1, 𝑓𝑓, 𝜉𝜉, 𝜂𝜂, 𝑔𝑔 = 〈∙,∙〉) be an almost contact metric manifold. 
Definition 3.1 ([10], [11]). A class of almost contact metric manifolds characterized by 

the identity 

∇𝑋𝑋(𝑓𝑓)𝑌𝑌 + ∇𝑌𝑌(𝑓𝑓)𝑋𝑋 = −𝜂𝜂(𝑌𝑌)𝑓𝑓𝑋𝑋 − 𝜂𝜂(𝑋𝑋)𝑓𝑓𝑌𝑌; 𝑋𝑋, 𝑌𝑌 ∈ 𝒳𝒳(𝑀𝑀),             (3.1) 

 is called generalized Kenmotsu manifolds (GK-manifolds).  
Note that this class of manifolds appears as nearly Kenmotsu manifolds ([11] and others). 

We will call these manifolds, as in [10], generalized Kenmotsu manifolds, and in short GK-
manifolds. 

The following theorem takes place. 
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where 𝜔𝜔 = 𝜔𝜔0 = 𝜋𝜋∗(𝜂𝜂);  𝜋𝜋 is the natural projection of the space of the adjoint G-structure 
on the manifold M,  𝜔𝜔𝑖𝑖 = 𝑔𝑔𝑖𝑖𝑖𝑖𝜔𝜔𝑖𝑖 , 

𝐵𝐵𝑎𝑎𝑎𝑎
𝑐𝑐 = −

√−1
2 𝑓𝑓�̂�𝑎,𝑐𝑐

𝑎𝑎 , 𝐵𝐵𝑎𝑎𝑎𝑎
𝑐𝑐 =

√−1
2 𝑓𝑓𝑎𝑎,𝑐𝑐̂

�̂�𝑎 , 𝐵𝐵𝑎𝑎𝑎𝑎𝑐𝑐 =
√−1

2 𝑓𝑓�̂�𝑎,𝑐𝑐̂
𝑎𝑎 , 

𝐵𝐵𝑎𝑎𝑎𝑎𝑐𝑐 = −
√−1

2 𝑓𝑓𝑎𝑎,𝑐𝑐
�̂�𝑎 , 𝐵𝐵𝑎𝑎

𝑎𝑎 = √−1𝑓𝑓0,𝑎𝑎
𝑎𝑎 , 𝐵𝐵𝑎𝑎

𝑎𝑎 = −√−1𝑓𝑓0,�̂�𝑎
�̂�𝑎 , 

        𝐵𝐵𝑎𝑎𝑎𝑎 = √−1 (𝑓𝑓0,�̂�𝑎
𝑎𝑎 − 1

2
𝑓𝑓�̂�𝑎,0

𝑎𝑎 ) , 𝐵𝐵𝑎𝑎𝑎𝑎 = −√−1 (𝑓𝑓0,𝑎𝑎
�̂�𝑎 − 1

2
𝑓𝑓𝑎𝑎,0

�̂�𝑎 ),                  (2.8) 

𝐶𝐶𝑎𝑎𝑎𝑎 = √−1𝑓𝑓[�̂�𝑎,�̂�𝑎]
0 , 𝐶𝐶𝑎𝑎𝑎𝑎 = −√−1𝑓𝑓[𝑎𝑎,𝑎𝑎]

0 , 𝐶𝐶𝑎𝑎
𝑎𝑎 = −√−1(𝑓𝑓�̂�𝑎,𝑎𝑎

0 + 𝑓𝑓𝑎𝑎,�̂�𝑎
0 ) = 𝐵𝐵𝑎𝑎

𝑎𝑎 − 𝐵𝐵𝑎𝑎
𝑎𝑎, 

𝐶𝐶𝑎𝑎 = −√−1𝑓𝑓�̂�𝑎,0
0 , 𝐶𝐶𝑎𝑎 = √−1𝑓𝑓𝑎𝑎,0

0 . 

Let us introduce the following notation [17] 

𝐶𝐶𝑎𝑎𝑎𝑎𝑐𝑐 = √−1
2

𝑓𝑓�̂�𝑎,𝑐𝑐̂
𝑎𝑎 , 𝐶𝐶𝑎𝑎𝑎𝑎𝑐𝑐 = − √−1

2
𝑓𝑓𝑎𝑎,𝑐𝑐

�̂�𝑎 , 𝐹𝐹𝑎𝑎𝑎𝑎 = √−1𝑓𝑓�̂�𝑎,�̂�𝑎
0 , 𝐹𝐹𝑎𝑎𝑎𝑎 = −√−1𝑓𝑓𝑎𝑎,𝑎𝑎

0 .            (2.9) 

Consider the following function families on the space of adjoint G-structure [17]: 
• 𝐵𝐵 = {𝐵𝐵𝑖𝑖

𝑖𝑖𝑗𝑗}; 𝐵𝐵𝑎𝑎
�̂�𝑎𝑐𝑐 = 𝐵𝐵𝑎𝑎𝑎𝑎

𝑐𝑐, 𝐵𝐵�̂�𝑎
𝑎𝑎𝑐𝑐̂ = 𝐵𝐵𝑎𝑎𝑎𝑎

𝑐𝑐; all other components of family B are zero; 
• 𝐶𝐶 = {𝐶𝐶𝑖𝑖

𝑖𝑖𝑗𝑗};  𝐶𝐶𝑎𝑎
�̂�𝑎𝑐𝑐̂ = 𝐶𝐶𝑎𝑎𝑎𝑎𝑐𝑐;  𝐶𝐶�̂�𝑎

𝑎𝑎𝑐𝑐 = 𝐶𝐶𝑎𝑎𝑎𝑎𝑐𝑐; all other components of family C are zero; 
• 𝐷𝐷 = {𝐷𝐷𝑖𝑖

𝑖𝑖};  𝐷𝐷𝑎𝑎
�̂�𝑎 = 𝐵𝐵𝑎𝑎𝑎𝑎; 𝐷𝐷�̂�𝑎

𝑎𝑎 = 𝐵𝐵𝑎𝑎𝑎𝑎; all other components of family D are zero; 
• 𝐸𝐸 = {𝐸𝐸𝑖𝑖

𝑖𝑖};  𝐸𝐸𝑎𝑎
𝑎𝑎 = 𝐵𝐵𝑎𝑎

𝑎𝑎; 𝐸𝐸�̂�𝑎
�̂�𝑎 = 𝐵𝐵𝑎𝑎

𝑎𝑎; all other components of family D are zero; 
• 𝐹𝐹 = {𝐹𝐹𝑖𝑖

𝑖𝑖};  𝐹𝐹𝑎𝑎
�̂�𝑎 = 𝐹𝐹𝑎𝑎𝑎𝑎; 𝐹𝐹�̂�𝑎

𝑎𝑎 = 𝐹𝐹𝑎𝑎𝑎𝑎; all other components of family F are zero; 
• 𝐺𝐺 = {𝐺𝐺𝑖𝑖};  𝐺𝐺𝑎𝑎 = 𝐶𝐶𝑎𝑎; 𝐺𝐺𝑎𝑎 = 𝐶𝐶𝑎𝑎; all other components of family D are zero. 

These systems of functions define tensors of the corresponding kinds on the manifold M; 
these tensors are called the first, second,.., sixth structure tensors of the AC-structure, 
respectively. The following takes place 

Proposition 2.1 [17]. Structure tensors of the AC-structure have the following properties: 

1) 𝑓𝑓 ∘ 𝐵𝐵(𝑋𝑋, 𝑌𝑌) = −𝐵𝐵(𝑓𝑓𝑋𝑋, 𝑌𝑌) = 𝐵𝐵(𝑋𝑋, 𝑓𝑓𝑌𝑌); 
2) 〈〈𝐵𝐵(𝑋𝑋, 𝑌𝑌), 𝑍𝑍〉〉 + 〈〈𝑌𝑌, 𝐵𝐵(𝑋𝑋, 𝑍𝑍)〉〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0; 

3) 𝑓𝑓 ∘ 𝐶𝐶(𝑋𝑋, 𝑌𝑌) = −𝐶𝐶(𝑓𝑓𝑋𝑋, 𝑌𝑌) = −𝐶𝐶(𝑋𝑋, 𝑓𝑓𝑌𝑌); 
4) 〈〈𝐶𝐶(𝑋𝑋, 𝑌𝑌), 𝑍𝑍〉〉 + 〈〈𝑌𝑌, 𝐶𝐶(𝑋𝑋, 𝑍𝑍)〉〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 0; 

5) 𝑓𝑓 ∘ 𝐷𝐷 = −𝐷𝐷 ∘ 𝑓𝑓; 
6) 𝑓𝑓 ∘ 𝐸𝐸 = 𝐸𝐸 ∘ 𝑓𝑓; 

7) 𝑓𝑓 ∘ 𝐹𝐹 = −𝐹𝐹 ∘ 𝑓𝑓; 
8) 𝐺𝐺 ∈ ℒ;  were 〈〈𝑋𝑋, 𝑌𝑌〉〉 = 〈𝑋𝑋, 𝑌𝑌〉 + √−1〈𝑋𝑋, 𝑓𝑓𝑌𝑌〉, (𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝒳𝒳(𝑀𝑀)). 

3 Generalized Kenmotsu manifolds 

Let (𝑀𝑀2𝑛𝑛+1, 𝑓𝑓, 𝜉𝜉, 𝜂𝜂, 𝑔𝑔 = 〈∙,∙〉) be an almost contact metric manifold. 
Definition 3.1 ([10], [11]). A class of almost contact metric manifolds characterized by 

the identity 

∇𝑋𝑋(𝑓𝑓)𝑌𝑌 + ∇𝑌𝑌(𝑓𝑓)𝑋𝑋 = −𝜂𝜂(𝑌𝑌)𝑓𝑓𝑋𝑋 − 𝜂𝜂(𝑋𝑋)𝑓𝑓𝑌𝑌; 𝑋𝑋, 𝑌𝑌 ∈ 𝒳𝒳(𝑀𝑀),             (3.1) 

 is called generalized Kenmotsu manifolds (GK-manifolds).  
Note that this class of manifolds appears as nearly Kenmotsu manifolds ([11] and others). 

We will call these manifolds, as in [10], generalized Kenmotsu manifolds, and in short GK-
manifolds. 

The following theorem takes place. 

 

Theorem 3.1 [13]. The complete group of structure equations for GK-manifolds on the 
space of the adjoint G-structure has the form: 

1) 𝑑𝑑𝑑𝑑 = 𝐹𝐹𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎 ∧ 𝑑𝑑𝑎𝑎 + 𝐹𝐹𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎 ∧ 𝑑𝑑𝑎𝑎; 
2) 𝑑𝑑𝑑𝑑𝑎𝑎 = −𝜃𝜃𝑎𝑎

𝑎𝑎 ∧ 𝑑𝑑𝑎𝑎 + 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎 ∧ 𝑑𝑑𝑎𝑎 − 3
2

𝐹𝐹𝑎𝑎𝑎𝑎𝑑𝑑 ∧ 𝑑𝑑𝑎𝑎 + 𝛿𝛿𝑎𝑎
𝑎𝑎𝑑𝑑 ∧ 𝑑𝑑𝑎𝑎; 

3) 𝑑𝑑𝑑𝑑𝑎𝑎 = 𝜃𝜃𝑎𝑎
𝑎𝑎 ∧ 𝑑𝑑𝑎𝑎 + 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎 ∧ 𝑑𝑑𝑎𝑎 − 3

2
𝐹𝐹𝑎𝑎𝑎𝑎𝑑𝑑 ∧ 𝑑𝑑𝑎𝑎 + 𝛿𝛿𝑎𝑎

𝑎𝑎𝑑𝑑 ∧ 𝑑𝑑𝑎𝑎; 

4) 𝑑𝑑𝜃𝜃𝑎𝑎
𝑎𝑎 = −𝜃𝜃𝑎𝑎

𝑎𝑎 ∧ 𝜃𝜃𝑎𝑎
𝑎𝑎 + (𝐴𝐴𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎 − 2𝐶𝐶𝑎𝑎𝑎𝑎ℎ𝐶𝐶ℎ𝑎𝑎𝑎𝑎 −
3
2 𝐹𝐹𝑎𝑎𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎) 𝑑𝑑𝑎𝑎 ∧ 𝑑𝑑𝑎𝑎 + 

+ (−
1
3 𝛿𝛿𝑎𝑎

𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎 +
2
3 𝛿𝛿𝑎𝑎

𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎 +
2
3 𝛿𝛿𝑎𝑎

𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎) 𝑑𝑑𝑎𝑎 ∧ 𝑑𝑑𝑎𝑎 + 

+ (1
3

𝛿𝛿𝑎𝑎
𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎 − 2

3
𝛿𝛿𝑎𝑎

𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎 − 2
3

𝛿𝛿𝑎𝑎
𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎) 𝑑𝑑𝑎𝑎 ∧ 𝑑𝑑𝑎𝑎; 

5) 𝑑𝑑𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝑎𝑎
𝑎𝑎 + 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝑎𝑎

𝑎𝑎 + 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝑎𝑎
𝑎𝑎 = 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎 − 2𝛿𝛿𝑎𝑎

[𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎]𝑑𝑑𝑎𝑎 − 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑; 
6) 𝑑𝑑𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 − 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝑎𝑎

𝑎𝑎 − 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝑎𝑎
𝑎𝑎 − 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝜃𝜃𝑎𝑎

𝑎𝑎 = 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝑎𝑎 − 2𝛿𝛿[𝑎𝑎
𝑎𝑎 𝐹𝐹𝑎𝑎𝑎𝑎]𝑑𝑑𝑎𝑎 − 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑; 

7) 𝑑𝑑𝐹𝐹𝑎𝑎𝑎𝑎 + 𝐹𝐹𝑎𝑎𝑎𝑎𝜃𝜃𝑎𝑎
𝑎𝑎 + 𝐹𝐹𝑎𝑎𝑎𝑎𝜃𝜃𝑎𝑎

𝑎𝑎 = −2𝐹𝐹𝑎𝑎𝑎𝑎𝑑𝑑; 

         8) 𝑑𝑑𝐹𝐹𝑎𝑎𝑎𝑎 − 𝐹𝐹𝑎𝑎𝑎𝑎𝜃𝜃𝑎𝑎
𝑎𝑎 − 𝐹𝐹𝑎𝑎𝑎𝑎𝜃𝜃𝑎𝑎

𝑎𝑎 = −2𝐹𝐹𝑎𝑎𝑎𝑎𝑑𝑑;                           (3.2) 
9) 𝑑𝑑𝐴𝐴𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎 + 𝐴𝐴𝑎𝑎𝑎𝑎
ℎ𝑎𝑎𝜃𝜃ℎ

𝑎𝑎 + 𝐴𝐴𝑎𝑎𝑎𝑎
𝑎𝑎ℎ𝜃𝜃ℎ

𝑎𝑎 − 𝐴𝐴ℎ𝑎𝑎
𝑎𝑎𝑎𝑎𝜃𝜃𝑎𝑎

ℎ − 𝐴𝐴𝑎𝑎ℎ
𝑎𝑎𝑎𝑎𝜃𝜃𝑎𝑎

ℎ = 𝐴𝐴𝑎𝑎𝑎𝑎ℎ
𝑎𝑎𝑎𝑎 𝑑𝑑ℎ + 𝐴𝐴𝑎𝑎𝑎𝑎

𝑎𝑎𝑎𝑎ℎ𝑑𝑑ℎ + 𝐴𝐴𝑎𝑎𝑎𝑎0
𝑎𝑎𝑎𝑎 𝑑𝑑,  

where  

𝐶𝐶[𝑎𝑎𝑎𝑎𝑎𝑎] = 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎, 𝐶𝐶[𝑎𝑎𝑎𝑎𝑎𝑎] = 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎, 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎̅̅ ̅̅ ̅̅ = 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎, 𝐹𝐹𝑎𝑎𝑎𝑎 + 𝐹𝐹𝑎𝑎𝑎𝑎 = 0, 𝐹𝐹𝑎𝑎𝑎𝑎 + 𝐹𝐹𝑎𝑎𝑎𝑎 = 0, 𝐹𝐹𝑎𝑎𝑎𝑎̅̅ ̅̅ ̅ = 𝐹𝐹𝑎𝑎𝑎𝑎,
𝐴𝐴[𝑎𝑎𝑎𝑎]

𝑎𝑎𝑎𝑎 = 𝐴𝐴𝑎𝑎𝑎𝑎
[𝑎𝑎𝑎𝑎] = 0, 𝐶𝐶𝑎𝑎[𝑎𝑎𝑎𝑎𝑎𝑎] = 3

2
𝐹𝐹𝑎𝑎[𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎], 𝐶𝐶𝑎𝑎[𝑎𝑎𝑎𝑎𝑎𝑎] = 3

2
𝐹𝐹𝑎𝑎[𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎], 𝐹𝐹𝑎𝑎𝑎𝑎𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 = 0.             (3.3) 

Corollary 1 [10]. If 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 = 0  and 𝐹𝐹𝑎𝑎𝑎𝑎 = 𝐹𝐹𝑎𝑎𝑎𝑎 = 0  then GK-manifold is a 
Kenmotsu manifold. 

Definition 3.2 [10]. GK-structure is called: a special generalized Kenmotsu structure of 
the first kinds (in short SGK-structure of the first kind) if Cdbc = Cdbc = 0 ; a special 
generalized Kenmotsu structure of the second kind (in short SGK-structure of the second 
kind) if 𝐹𝐹𝑎𝑎𝑎𝑎 = 𝐹𝐹𝑎𝑎𝑎𝑎 = 0. 

Identity 

(𝐴𝐴𝑎𝑎[𝑎𝑎
𝑎𝑎𝑎𝑎 − 2𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝐶𝐶𝑎𝑎𝑎𝑎[𝑎𝑎)𝐶𝐶|𝑎𝑎|𝑎𝑎ℎ] = 0              (3.4) 

is called the first fundamental identity.  
Identity 

(𝐴𝐴𝑎𝑎[𝑎𝑎
𝑎𝑎ℎ − 3

2
𝐹𝐹𝑎𝑎ℎ𝐹𝐹𝑎𝑎[𝑎𝑎) 𝐹𝐹|ℎ|𝑎𝑎] = 0                           (3.5) 

is called the second fundamental identity. 
Identity 

2𝐹𝐹𝑎𝑎𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎 = 𝐹𝐹𝑎𝑎𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎 + 𝐹𝐹𝑎𝑎𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎;               (3.6) 

is called the third fundamental identity. 
Let M be a GK-manifold. Let us recall the following theorems from [13-14]. 
Theorem 3.2 [13]. The nonzero essential components of the Riemann-Christoffel tensor 

on the space of the adjoint G-structure have the form: 

1) 𝑅𝑅00𝑎𝑎
𝑎𝑎 = 𝐹𝐹𝑎𝑎𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎 + 𝛿𝛿𝑎𝑎

𝑎𝑎;  𝑅𝑅00�̂�𝑎
�̂�𝑎 = 𝐹𝐹𝑎𝑎𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎 + 𝛿𝛿𝑎𝑎

𝑎𝑎; 
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2) 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
𝑎𝑎 = − 2

3
𝛿𝛿𝑏𝑏

𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 + 1
3

𝛿𝛿𝑏𝑏
𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 + 1

3
𝛿𝛿𝑏𝑏

𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏;   𝑅𝑅�̂�𝑏𝑏𝑏̂�̂�𝑏
�̂�𝑎 = − 2

3
𝛿𝛿𝑎𝑎

𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 + 1
3

𝛿𝛿𝑎𝑎
𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 + 1

3
𝛿𝛿𝑎𝑎

𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏; 

3) 𝑅𝑅𝑏𝑏𝑏𝑏�̂�𝑏
𝑎𝑎 = 𝐴𝐴𝑏𝑏𝑏𝑏

𝑎𝑎𝑏𝑏 − 𝐶𝐶𝑎𝑎𝑏𝑏ℎ𝐶𝐶ℎ𝑏𝑏𝑏𝑏 − 1
2

𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 − 𝛿𝛿𝑏𝑏
𝑎𝑎𝛿𝛿𝑏𝑏

𝑏𝑏;  𝑅𝑅�̂�𝑏𝑏𝑏�̂�𝑏
�̂�𝑎 = −𝐴𝐴𝑎𝑎𝑏𝑏

𝑏𝑏𝑏𝑏 + 𝐶𝐶𝑏𝑏𝑏𝑏ℎ𝐶𝐶ℎ𝑎𝑎𝑏𝑏 + 1
2

𝐹𝐹𝑏𝑏𝑏𝑏𝐹𝐹𝑎𝑎𝑏𝑏 +
𝛿𝛿𝑏𝑏

𝑏𝑏𝛿𝛿𝑎𝑎
𝑏𝑏; 

4) 𝑅𝑅�̂�𝑏𝑏𝑏𝑏𝑏
𝑎𝑎 = 2𝐶𝐶𝑎𝑎𝑏𝑏ℎ𝐶𝐶ℎ𝑏𝑏𝑏𝑏 + 𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 − 2𝛿𝛿[𝑏𝑏

𝑎𝑎 𝛿𝛿𝑏𝑏]
𝑏𝑏 ;   𝑅𝑅𝑏𝑏𝑏𝑏̂�̂�𝑏

�̂�𝑎 = 2𝐶𝐶𝑎𝑎𝑏𝑏ℎ𝐶𝐶ℎ𝑏𝑏𝑏𝑏 + 𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 − 2𝛿𝛿𝑎𝑎
[𝑏𝑏𝛿𝛿𝑏𝑏

𝑏𝑏]; 

5) 𝑅𝑅�̂�𝑏𝑏𝑏̂�̂�𝑏
𝑎𝑎 = 𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 − 1

2
(𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 + 𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 + 𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏);   𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

�̂�𝑎 = 𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 − 1
2

(𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 +
𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 + 𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏).       (3.7) 

4 Curvature identities for GK-manifolds 

In [19], we obtained several identities for the Riemannian curvature tensor of generalized 
Kenmotsu manifolds and separated two subclasses of GK-manifolds. In addition, there were 
obtained the local structure of separated classes for GK-manifolds. In [20], two classes of 
generalized Kenmotsu manifolds were separated, called the class of f-holomorphic and the 
class of f-paracontact manifolds; a complete classification of the separated classes was 
obtained. In this paragraph we will also, as in [19] and [20], consider two classes of 
generalized Kenmotsu manifolds. 

Definition 4.1. Let us call AC-manifold as a manifold of class 𝑅𝑅3 if its curvature tensor 
satisfies the equation: 

𝑅𝑅(𝑓𝑓2𝑋𝑋, 𝑓𝑓2𝑌𝑌)𝑓𝑓2𝑍𝑍 − 𝑅𝑅(𝑓𝑓2𝑋𝑋, 𝑓𝑓𝑌𝑌)𝑓𝑓𝑍𝑍 − 𝑅𝑅(𝑓𝑓𝑋𝑋, 𝑓𝑓2𝑌𝑌)𝑓𝑓𝑍𝑍 − 𝑅𝑅(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑌𝑌)𝑓𝑓2𝑍𝑍 = 0; ∀𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈
𝒳𝒳(𝑀𝑀).                                  (4.1) 

Theorem 4.1. A GK-manifold is a manifold of class𝑅𝑅3 if and only if on the space of the 
adjoint G-structure 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏

0 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏
𝑏𝑏 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏

�̂�𝑏 = 0. 
Corollary. Let GK-manifold be a manifold of class 𝑅𝑅3. Then its Riemannian curvature 

tensor satisfies the identity (4.1). Writing out identity (4.1) on the space of the adjoint G-
structure, we obtain: 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗

𝑖𝑖 𝑓𝑓𝑚𝑚
𝑗𝑗𝑓𝑓𝑠𝑠

𝑚𝑚𝑋𝑋𝑠𝑠𝑓𝑓𝑝𝑝
𝑗𝑗𝑓𝑓𝑞𝑞

𝑝𝑝𝑌𝑌𝑞𝑞𝑓𝑓𝑟𝑟
𝑗𝑗𝑓𝑓𝑡𝑡

𝑟𝑟𝑍𝑍𝑡𝑡 − 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 𝑓𝑓𝑚𝑚

𝑗𝑗𝑓𝑓𝑠𝑠
𝑚𝑚𝑋𝑋𝑠𝑠𝑓𝑓𝑝𝑝

𝑗𝑗𝑌𝑌𝑝𝑝𝑓𝑓𝑞𝑞
𝑗𝑗𝑍𝑍𝑞𝑞 −

𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 𝑓𝑓𝑚𝑚

𝑗𝑗𝑋𝑋𝑚𝑚𝑓𝑓𝑝𝑝
𝑗𝑗𝑓𝑓𝑞𝑞

𝑝𝑝𝑌𝑌𝑞𝑞𝑓𝑓𝑟𝑟
𝑗𝑗𝑍𝑍𝑟𝑟 − 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗

𝑖𝑖 𝑓𝑓𝑚𝑚
𝑗𝑗𝑋𝑋𝑚𝑚𝑓𝑓𝑝𝑝

𝑗𝑗𝑌𝑌𝑝𝑝𝑓𝑓𝑟𝑟
𝑗𝑗𝑓𝑓𝑠𝑠

𝑟𝑟𝑍𝑍𝑠𝑠 = 0, i.e. 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏
0 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏

𝑏𝑏 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏
�̂�𝑏 = 0. 

Conversely, let the components of the Riemannian curvature tensor of the GK-manifold 
satisfy the equations 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏

0 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏
𝑏𝑏 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏

�̂�𝑏 = 0. Applying the identity reconstruction 
procedure to the equation 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏

𝑖𝑖 = 0, we obtain the identity (4.1).   � 
Theorem 4.2. A GK-manifold is a manifold of class 𝑅𝑅3 if and only if it is a special generalized 
Kenmotsu manifold of the second kind such that 𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 = 0. 
Let M be a GK-manifold of class 𝑅𝑅3, then it follows from theorems 4.1 and (3.7) that: 

1) 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
𝑎𝑎 = 2𝛿𝛿[𝑏𝑏

𝑎𝑎 𝐹𝐹|𝑏𝑏|𝑏𝑏] + 2 (− 1
3

𝛿𝛿𝑏𝑏
𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 + 2

3
𝛿𝛿𝑏𝑏

𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 + 2
3

𝛿𝛿𝑏𝑏
𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏) = 0; 

2) 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
�̂�𝑎 = −2𝐶𝐶𝑎𝑎𝑏𝑏[𝑏𝑏𝑏𝑏] + 𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 − 2𝐹𝐹𝑎𝑎[𝑏𝑏𝐹𝐹|𝑏𝑏|𝑏𝑏] = 0.              (4.2) 

The equation (4.2:1) we rewrite as 2𝛿𝛿𝑏𝑏
𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 − 𝛿𝛿𝑏𝑏

𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 − 𝛿𝛿𝑏𝑏
𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 = 0. Let us contract the 

latter equation by indices a and b, then we get 2(𝑛𝑛 + 1)𝐹𝐹𝑏𝑏𝑏𝑏 = 0. Hence, we obtain that 𝐹𝐹𝑏𝑏𝑏𝑏 =
0, i.e. the manifold is a special generalized Kenmotsu manifold of the second kind. 

Now let us consider the equation (4.2:2). By virtue of 𝐹𝐹𝑏𝑏𝑏𝑏 = 0, then, taking into account 
equation (3.3), we obtain that 𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 = 0. Since for a special generalized Kenmotsu manifold 
of the second kind 𝐹𝐹𝑏𝑏𝑏𝑏 = 0, then 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝑎𝑎 = 0. And by virtue of 𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 = 0, we have 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
�̂�𝑎 = 0. 

Hence, according to Theorem 4.1, the manifold M is a GK-manifold of class 𝑅𝑅3.    � 
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2) 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
𝑎𝑎 = − 2

3
𝛿𝛿𝑏𝑏

𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 + 1
3

𝛿𝛿𝑏𝑏
𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 + 1

3
𝛿𝛿𝑏𝑏

𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏;   𝑅𝑅�̂�𝑏𝑏𝑏̂�̂�𝑏
�̂�𝑎 = − 2

3
𝛿𝛿𝑎𝑎

𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 + 1
3

𝛿𝛿𝑎𝑎
𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 + 1

3
𝛿𝛿𝑎𝑎

𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏; 

3) 𝑅𝑅𝑏𝑏𝑏𝑏�̂�𝑏
𝑎𝑎 = 𝐴𝐴𝑏𝑏𝑏𝑏

𝑎𝑎𝑏𝑏 − 𝐶𝐶𝑎𝑎𝑏𝑏ℎ𝐶𝐶ℎ𝑏𝑏𝑏𝑏 − 1
2

𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 − 𝛿𝛿𝑏𝑏
𝑎𝑎𝛿𝛿𝑏𝑏

𝑏𝑏;  𝑅𝑅�̂�𝑏𝑏𝑏�̂�𝑏
�̂�𝑎 = −𝐴𝐴𝑎𝑎𝑏𝑏

𝑏𝑏𝑏𝑏 + 𝐶𝐶𝑏𝑏𝑏𝑏ℎ𝐶𝐶ℎ𝑎𝑎𝑏𝑏 + 1
2

𝐹𝐹𝑏𝑏𝑏𝑏𝐹𝐹𝑎𝑎𝑏𝑏 +
𝛿𝛿𝑏𝑏

𝑏𝑏𝛿𝛿𝑎𝑎
𝑏𝑏; 

4) 𝑅𝑅�̂�𝑏𝑏𝑏𝑏𝑏
𝑎𝑎 = 2𝐶𝐶𝑎𝑎𝑏𝑏ℎ𝐶𝐶ℎ𝑏𝑏𝑏𝑏 + 𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 − 2𝛿𝛿[𝑏𝑏

𝑎𝑎 𝛿𝛿𝑏𝑏]
𝑏𝑏 ;   𝑅𝑅𝑏𝑏𝑏𝑏̂�̂�𝑏

�̂�𝑎 = 2𝐶𝐶𝑎𝑎𝑏𝑏ℎ𝐶𝐶ℎ𝑏𝑏𝑏𝑏 + 𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 − 2𝛿𝛿𝑎𝑎
[𝑏𝑏𝛿𝛿𝑏𝑏

𝑏𝑏]; 

5) 𝑅𝑅�̂�𝑏𝑏𝑏̂�̂�𝑏
𝑎𝑎 = 𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 − 1

2
(𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 + 𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 + 𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏);   𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

�̂�𝑎 = 𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 − 1
2

(𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 +
𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 + 𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏).       (3.7) 

4 Curvature identities for GK-manifolds 

In [19], we obtained several identities for the Riemannian curvature tensor of generalized 
Kenmotsu manifolds and separated two subclasses of GK-manifolds. In addition, there were 
obtained the local structure of separated classes for GK-manifolds. In [20], two classes of 
generalized Kenmotsu manifolds were separated, called the class of f-holomorphic and the 
class of f-paracontact manifolds; a complete classification of the separated classes was 
obtained. In this paragraph we will also, as in [19] and [20], consider two classes of 
generalized Kenmotsu manifolds. 

Definition 4.1. Let us call AC-manifold as a manifold of class 𝑅𝑅3 if its curvature tensor 
satisfies the equation: 

𝑅𝑅(𝑓𝑓2𝑋𝑋, 𝑓𝑓2𝑌𝑌)𝑓𝑓2𝑍𝑍 − 𝑅𝑅(𝑓𝑓2𝑋𝑋, 𝑓𝑓𝑌𝑌)𝑓𝑓𝑍𝑍 − 𝑅𝑅(𝑓𝑓𝑋𝑋, 𝑓𝑓2𝑌𝑌)𝑓𝑓𝑍𝑍 − 𝑅𝑅(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑌𝑌)𝑓𝑓2𝑍𝑍 = 0; ∀𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈
𝒳𝒳(𝑀𝑀).                                  (4.1) 

Theorem 4.1. A GK-manifold is a manifold of class𝑅𝑅3 if and only if on the space of the 
adjoint G-structure 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏

0 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏
𝑏𝑏 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏

�̂�𝑏 = 0. 
Corollary. Let GK-manifold be a manifold of class 𝑅𝑅3. Then its Riemannian curvature 

tensor satisfies the identity (4.1). Writing out identity (4.1) on the space of the adjoint G-
structure, we obtain: 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗

𝑖𝑖 𝑓𝑓𝑚𝑚
𝑗𝑗𝑓𝑓𝑠𝑠

𝑚𝑚𝑋𝑋𝑠𝑠𝑓𝑓𝑝𝑝
𝑗𝑗𝑓𝑓𝑞𝑞

𝑝𝑝𝑌𝑌𝑞𝑞𝑓𝑓𝑟𝑟
𝑗𝑗𝑓𝑓𝑡𝑡

𝑟𝑟𝑍𝑍𝑡𝑡 − 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 𝑓𝑓𝑚𝑚

𝑗𝑗𝑓𝑓𝑠𝑠
𝑚𝑚𝑋𝑋𝑠𝑠𝑓𝑓𝑝𝑝

𝑗𝑗𝑌𝑌𝑝𝑝𝑓𝑓𝑞𝑞
𝑗𝑗𝑍𝑍𝑞𝑞 −

𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 𝑓𝑓𝑚𝑚

𝑗𝑗𝑋𝑋𝑚𝑚𝑓𝑓𝑝𝑝
𝑗𝑗𝑓𝑓𝑞𝑞

𝑝𝑝𝑌𝑌𝑞𝑞𝑓𝑓𝑟𝑟
𝑗𝑗𝑍𝑍𝑟𝑟 − 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗

𝑖𝑖 𝑓𝑓𝑚𝑚
𝑗𝑗𝑋𝑋𝑚𝑚𝑓𝑓𝑝𝑝

𝑗𝑗𝑌𝑌𝑝𝑝𝑓𝑓𝑟𝑟
𝑗𝑗𝑓𝑓𝑠𝑠

𝑟𝑟𝑍𝑍𝑠𝑠 = 0, i.e. 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏
0 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏

𝑏𝑏 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏
�̂�𝑏 = 0. 

Conversely, let the components of the Riemannian curvature tensor of the GK-manifold 
satisfy the equations 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏

0 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏
𝑏𝑏 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏

�̂�𝑏 = 0. Applying the identity reconstruction 
procedure to the equation 𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏

𝑖𝑖 = 0, we obtain the identity (4.1).   � 
Theorem 4.2. A GK-manifold is a manifold of class 𝑅𝑅3 if and only if it is a special generalized 
Kenmotsu manifold of the second kind such that 𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 = 0. 
Let M be a GK-manifold of class 𝑅𝑅3, then it follows from theorems 4.1 and (3.7) that: 

1) 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
𝑎𝑎 = 2𝛿𝛿[𝑏𝑏

𝑎𝑎 𝐹𝐹|𝑏𝑏|𝑏𝑏] + 2 (− 1
3

𝛿𝛿𝑏𝑏
𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 + 2

3
𝛿𝛿𝑏𝑏

𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 + 2
3

𝛿𝛿𝑏𝑏
𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏) = 0; 

2) 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
�̂�𝑎 = −2𝐶𝐶𝑎𝑎𝑏𝑏[𝑏𝑏𝑏𝑏] + 𝐹𝐹𝑎𝑎𝑏𝑏𝐹𝐹𝑏𝑏𝑏𝑏 − 2𝐹𝐹𝑎𝑎[𝑏𝑏𝐹𝐹|𝑏𝑏|𝑏𝑏] = 0.              (4.2) 

The equation (4.2:1) we rewrite as 2𝛿𝛿𝑏𝑏
𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 − 𝛿𝛿𝑏𝑏

𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 − 𝛿𝛿𝑏𝑏
𝑎𝑎𝐹𝐹𝑏𝑏𝑏𝑏 = 0. Let us contract the 

latter equation by indices a and b, then we get 2(𝑛𝑛 + 1)𝐹𝐹𝑏𝑏𝑏𝑏 = 0. Hence, we obtain that 𝐹𝐹𝑏𝑏𝑏𝑏 =
0, i.e. the manifold is a special generalized Kenmotsu manifold of the second kind. 

Now let us consider the equation (4.2:2). By virtue of 𝐹𝐹𝑏𝑏𝑏𝑏 = 0, then, taking into account 
equation (3.3), we obtain that 𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 = 0. Since for a special generalized Kenmotsu manifold 
of the second kind 𝐹𝐹𝑏𝑏𝑏𝑏 = 0, then 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝑎𝑎 = 0. And by virtue of 𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 = 0, we have 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏
�̂�𝑎 = 0. 

Hence, according to Theorem 4.1, the manifold M is a GK-manifold of class 𝑅𝑅3.    � 

 

Sinc 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
0 = 𝐴𝐴𝑎𝑎𝑎𝑎

0𝑐𝑐 − 𝐶𝐶0𝑐𝑐ℎ𝐶𝐶ℎ𝑎𝑎𝑎𝑎 − 1
2

𝐹𝐹0𝑐𝑐𝐹𝐹𝑎𝑎𝑎𝑎 − 𝛿𝛿𝑎𝑎
0𝛿𝛿𝑎𝑎

𝑐𝑐 = 0, 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
𝑑𝑑 = 𝐴𝐴𝑎𝑎𝑐𝑐

𝑎𝑎𝑑𝑑 − 𝐶𝐶𝑎𝑎𝑑𝑑ℎ𝐶𝐶ℎ𝑎𝑎𝑐𝑐 −
1
2

𝐹𝐹𝑎𝑎𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐 − 𝛿𝛿𝑐𝑐
𝑎𝑎𝛿𝛿𝑎𝑎

𝑑𝑑, 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
�̂�𝑑 = −𝛿𝛿𝑎𝑎

𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐 + 𝛿𝛿𝑎𝑎
𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐 + 2𝛿𝛿[𝑎𝑎

𝑑𝑑 𝐹𝐹𝑎𝑎𝑐𝑐] , i.e. 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
𝑖𝑖 = 𝐴𝐴𝑎𝑎𝑎𝑎

𝑖𝑖𝑐𝑐 − 𝐶𝐶𝑖𝑖𝑐𝑐ℎ𝐶𝐶ℎ𝑎𝑎𝑎𝑎 −
1
2

𝐹𝐹𝑖𝑖𝑐𝑐𝐹𝐹𝑎𝑎𝑎𝑎 − 𝛿𝛿𝑎𝑎
𝑐𝑐𝛿𝛿𝑎𝑎

𝑖𝑖 . At fixed point 𝑝𝑝 ∈ 𝑀𝑀 it is obvious equivalent to the relation 𝑅𝑅(𝜀𝜀𝑎𝑎, 𝜀𝜀𝑐𝑐̂)𝜀𝜀𝑎𝑎 =
𝐴𝐴(𝜀𝜀𝑎𝑎, 𝜀𝜀𝑎𝑎, 𝜀𝜀𝑐𝑐̂) + ∇𝜀𝜀�̂�𝑐

(𝐶𝐶)(𝜀𝜀𝑎𝑎, 𝜀𝜀𝑎𝑎) − 𝜀𝜀𝑎𝑎〈𝜀𝜀𝑎𝑎, 𝜀𝜀𝑐𝑐̂〉. Since vectors {𝜀𝜀𝑎𝑎} form a basis for the subspace 

(𝐷𝐷𝑓𝑓
√−1)

𝑝𝑝
, while vectors {𝜀𝜀�̂�𝑎} form a basis for the subspace (𝐷𝐷𝑓𝑓

−√−1)
𝑝𝑝
, and projections of the 

module 𝒳𝒳(𝑀𝑀)𝐶𝐶  onto submodules 𝐷𝐷𝑓𝑓
√−1, 𝐷𝐷𝑓𝑓

−√−1  are endomorphisms 𝜋𝜋 = 𝜎𝜎 ∘ ℓ = − 1
2

(𝑓𝑓2 +
√−1𝑓𝑓), �̅�𝜋 = 𝜎𝜎 ∘ ℓ = 1

2
(−𝑓𝑓2 + √−1𝑓𝑓) , the identity 𝑅𝑅(𝜀𝜀𝑎𝑎, 𝜀𝜀𝑐𝑐̂)𝜀𝜀𝑎𝑎 = 𝐴𝐴(𝜀𝜀𝑎𝑎, 𝜀𝜀𝑎𝑎, 𝜀𝜀𝑐𝑐̂) +

∇𝜀𝜀�̂�𝑐
(𝐶𝐶)(𝜀𝜀𝑎𝑎, 𝜀𝜀𝑎𝑎) − 𝜀𝜀𝑎𝑎〈𝜀𝜀𝑎𝑎, 𝜀𝜀𝑐𝑐̂〉 can be rewritten as 𝑅𝑅(𝑓𝑓2𝑋𝑋 + √−1𝑓𝑓𝑋𝑋, −𝑓𝑓2𝑌𝑌 + √−1𝑓𝑓𝑌𝑌)(𝑓𝑓2𝑍𝑍 +

√−1𝑓𝑓𝑍𝑍) = 𝐴𝐴(𝑓𝑓2𝑍𝑍 + √−1𝑓𝑓𝑍𝑍, 𝑓𝑓2𝑋𝑋 + √−1𝑓𝑓𝑋𝑋, −𝑓𝑓2𝑌𝑌 + √−1𝑓𝑓𝑌𝑌) +
∇−𝑓𝑓2𝑌𝑌+√−1𝑓𝑓𝑌𝑌(𝐶𝐶)(𝑓𝑓2𝑍𝑍 + √−1𝑓𝑓𝑍𝑍, 𝑓𝑓2𝑋𝑋 + √−1𝑓𝑓𝑋𝑋) − (𝑓𝑓2𝑋𝑋 + √−1𝑓𝑓𝑋𝑋)〈−𝑓𝑓2𝑌𝑌 +
√−1𝑓𝑓𝑌𝑌, 𝑓𝑓2𝑍𝑍 + √−1𝑓𝑓𝑍𝑍〉; ∀𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝒳𝒳(𝑀𝑀). Developing this relation by linearity, splitting 
the real and imaginary parts of the resulting equality, and taking into account the properties 
of tensors A and ∇𝐶𝐶 (see [20] and [21]), we obtain an equivalent identity: 

𝑅𝑅(𝑓𝑓2𝑋𝑋, 𝑓𝑓2𝑌𝑌)𝑓𝑓2𝑍𝑍 + 𝑅𝑅(𝑓𝑓2𝑋𝑋, 𝑓𝑓𝑌𝑌)𝑓𝑓𝑍𝑍 − 𝑅𝑅(𝑓𝑓𝑋𝑋, 𝑓𝑓2𝑌𝑌)𝑓𝑓𝑍𝑍 + 𝑅𝑅(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑌𝑌)𝑓𝑓2𝑍𝑍 = −4𝐴𝐴(𝑍𝑍, 𝑋𝑋, 𝑌𝑌) +
∇𝑓𝑓2𝑌𝑌(𝐶𝐶)(𝑓𝑓2𝑍𝑍, 𝑓𝑓2𝑋𝑋) − ∇𝑓𝑓2𝑌𝑌(𝐶𝐶)(𝑓𝑓𝑍𝑍, 𝑓𝑓𝑋𝑋) + ∇𝑓𝑓𝑌𝑌(𝐶𝐶)(𝑓𝑓2𝑍𝑍, 𝑓𝑓𝑋𝑋) + ∇𝑓𝑓𝑌𝑌(𝐶𝐶)(𝑓𝑓𝑍𝑍, 𝑓𝑓2𝑋𝑋) −

2𝑓𝑓2𝑋𝑋〈𝑓𝑓𝑌𝑌, 𝑓𝑓𝑍𝑍〉 − 2𝑓𝑓𝑋𝑋〈𝑌𝑌, 𝑓𝑓𝑍𝑍〉; ∀𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝒳𝒳(𝑀𝑀).                (4.3) 

We call identity (4.3) the fourth complementary curvature identity for a GK-manifold. 
Let us introduce the following definition. 
Definition 4.2. Let us call AC-manifold as a manifold of class 𝑅𝑅4 if its curvature tensor 

satisfies the equation: 

𝑅𝑅(𝑓𝑓2𝑋𝑋, 𝑓𝑓2𝑌𝑌)𝑓𝑓2𝑍𝑍 + 𝑅𝑅(𝑓𝑓2𝑋𝑋, 𝑓𝑓𝑌𝑌)𝑓𝑓𝑍𝑍 − 𝑅𝑅(𝑓𝑓𝑋𝑋, 𝑓𝑓2𝑌𝑌)𝑓𝑓𝑍𝑍 + 𝑅𝑅(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑌𝑌)𝑓𝑓2𝑍𝑍 = 0;  ∀𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈
𝒳𝒳(𝑀𝑀).                     (4.4) 

The following results immediately from (4.3) and Definition 4.2. 
Theorem 4.3. A GK-manifold is a manifold of class 𝑅𝑅4  if and only if 𝐴𝐴(𝑍𝑍, 𝑋𝑋, 𝑌𝑌) =

1
4

{∇𝑓𝑓2𝑌𝑌(𝐶𝐶)(𝑓𝑓2𝑍𝑍, 𝑓𝑓2𝑋𝑋) − ∇𝑓𝑓2𝑌𝑌(𝐶𝐶)(𝑓𝑓𝑍𝑍, 𝑓𝑓𝑋𝑋) + ∇𝑓𝑓𝑌𝑌(𝐶𝐶)(𝑓𝑓2𝑍𝑍, 𝑓𝑓𝑋𝑋) + ∇𝑓𝑓𝑌𝑌(𝐶𝐶)(𝑓𝑓𝑍𝑍, 𝑓𝑓2𝑋𝑋) −
2𝑓𝑓2𝑋𝑋〈𝑓𝑓𝑌𝑌, 𝑓𝑓𝑍𝑍〉 − 2𝑓𝑓𝑋𝑋〈𝑌𝑌, 𝑓𝑓𝑍𝑍〉};  ∀𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈ 𝒳𝒳(𝑀𝑀). 

Theorem 4.3 provides an analytic expression for the third structure tensor or tensor of f-
holomorphic sectional curvature of GK-manifold of class 𝑅𝑅4. This tensor was introduced in 
[20]. An analytical expression for this tensor was also obtained in that work, when the 
manifold is a manifold of pointwise constant f-holomorphic sectional curvature. And 
properties of this tensor were proved in [21]. 

Theorem 4.4. A GK-manifold is a manifold of class𝑅𝑅4 if and only if on the space of the 
adjoint G-structure 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂

𝑑𝑑 = 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
�̂�𝑑 = 0. 

Proof. Let M be a GK-manifold that is a manifold of class 𝑅𝑅4 . Hence, Riemannian 
curvature tensor of such manifold satisfies the condition (4.4), which on the space of adjoint 
G-structure takes the form: 

𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 (𝑓𝑓2𝑋𝑋)𝑗𝑗(𝑓𝑓2𝑌𝑌)𝑗𝑗(𝑓𝑓2𝑍𝑍)𝑗𝑗 + 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗

𝑖𝑖 (𝑓𝑓2𝑋𝑋)𝑗𝑗(𝑓𝑓𝑌𝑌)𝑗𝑗(𝑓𝑓𝑍𝑍)𝑗𝑗 − 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 (𝑓𝑓𝑋𝑋)𝑗𝑗(𝑓𝑓2𝑌𝑌)𝑗𝑗(𝑓𝑓𝑍𝑍)𝑗𝑗 +

𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 (𝑓𝑓𝑋𝑋)𝑗𝑗(𝑓𝑓𝑌𝑌)𝑗𝑗(𝑓𝑓2𝑍𝑍)𝑗𝑗 = 0. 

Taking into account (3.7) and the form of the matrix f, the latter equation will be written in 
the form: 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂

𝑑𝑑 𝑋𝑋𝑎𝑎𝑌𝑌𝑐𝑐𝑍𝑍𝑎𝑎 + 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
�̂�𝑑 𝑋𝑋𝑎𝑎𝑌𝑌𝑐𝑐𝑍𝑍𝑎𝑎 = 0. The resulting equation is fulfilled if and only if 

𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
𝑑𝑑 = 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂

�̂�𝑑 = 0. 
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Conversely, if 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
𝑑𝑑 = 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂

�̂�𝑑 = 0  fulfilled, then, since the equality 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
0 = 0  is also 

satisfied for the GK-manifold, applying the identity restoration procedure to the equations 
𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂

𝑖𝑖 = 0, we obtain identity (4.4), i.e. the manifold is the manifold of class 𝑅𝑅4.   � 
Theorem 4.5. GK-manifold of class R4 is an SGK-manifold of the second kind. 
Proof. Let M be a GK-manifold of class 𝑅𝑅4. Then, according to Theorem 4.4 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂

�̂�𝑑 = 0 
and considering (3.7), we have: 

𝑅𝑅𝑎𝑎𝑐𝑐�̂�𝑑
�̂�𝑎 = 𝑅𝑅𝑐𝑐𝑎𝑎𝑎𝑎

𝑑𝑑 = − 2
3

𝛿𝛿𝑐𝑐
𝑑𝑑𝐹𝐹𝑎𝑎𝑎𝑎 + 1

3
𝛿𝛿𝑎𝑎

𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐 + 1
3

𝛿𝛿𝑎𝑎
𝑑𝑑𝐹𝐹𝑐𝑐𝑎𝑎 = 0.              (4.5) 

Let us contract this equation by indices d and a; then we obtain (𝑛𝑛 + 1)𝐹𝐹𝑎𝑎𝑐𝑐 = 0 ⟹ 𝐹𝐹𝑎𝑎𝑐𝑐 =
0, i.e. the manifold is a SGK-manifold of the second kind.   � 

Theorem 4.6. Let M be a GK-manifold of class 𝑅𝑅4. Then on the space of adjoint G-
structure: 1) 𝐴𝐴𝑎𝑎𝑎𝑎

𝑐𝑐𝑑𝑑 = 1
2

𝛿𝛿𝑎𝑎𝑎𝑎
𝑐𝑐𝑑𝑑; 2) 𝐶𝐶𝑑𝑑𝑐𝑐ℎ𝐶𝐶ℎ𝑎𝑎𝑎𝑎 = 𝛿𝛿𝑎𝑎𝑎𝑎

𝑐𝑐𝑑𝑑. 

Proof. Let M be a GK-manifold that is a manifold of class 𝑅𝑅4. Then, according to Theorem 
4.4 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂

𝑑𝑑 = 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
�̂�𝑑 = 0 and considering (3.7), we have: 

1) 𝑅𝑅𝑎𝑎𝑐𝑐�̂�𝑑
𝑎𝑎 = 𝐴𝐴𝑎𝑎𝑐𝑐

𝑎𝑎𝑑𝑑 − 𝐶𝐶𝑎𝑎𝑑𝑑ℎ𝐶𝐶ℎ𝑎𝑎𝑐𝑐 − 1
2

𝐹𝐹𝑎𝑎𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐 − 𝛿𝛿𝑐𝑐
𝑎𝑎𝛿𝛿𝑎𝑎

𝑑𝑑 = 0;   2) 𝑅𝑅𝑎𝑎𝑐𝑐�̂�𝑑
�̂�𝑎 = 𝑅𝑅𝑐𝑐𝑎𝑎𝑎𝑎

𝑑𝑑 = − 2
3

𝛿𝛿𝑐𝑐
𝑑𝑑𝐹𝐹𝑎𝑎𝑎𝑎 +

1
3

𝛿𝛿𝑎𝑎
𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐 + 1

3
𝛿𝛿𝑎𝑎

𝑑𝑑𝐹𝐹𝑐𝑐𝑎𝑎 = 0.                   (4.6) 

Let us contract the second equation by indices d and a; then we obtain (𝑛𝑛 + 1)𝐹𝐹𝑎𝑎𝑐𝑐 = 0 ⟹ 
𝐹𝐹𝑎𝑎𝑐𝑐 = 0, i.e. the manifold is a SGK-manifold of the second kind. Hence the equation (4.6:1) 
take the form: 𝐴𝐴𝑎𝑎𝑎𝑎

𝑑𝑑𝑐𝑐 − 𝐶𝐶𝑑𝑑𝑐𝑐ℎ𝐶𝐶ℎ𝑎𝑎𝑎𝑎 − 𝛿𝛿𝑎𝑎
𝑐𝑐𝛿𝛿𝑎𝑎

𝑑𝑑 = 0. Symmetrizing the latter equation, firstly, by 
indices a and b, and then by indices c and d, we get 𝐴𝐴(𝑎𝑎𝑎𝑎)

(𝑑𝑑𝑐𝑐) = 𝛿𝛿𝑎𝑎
𝑐𝑐𝛿𝛿𝑎𝑎

𝑑𝑑 = 1
2

𝛿𝛿𝑎𝑎𝑎𝑎
𝑐𝑐𝑑𝑑 . Due to the 

symmetry of tensor 𝐴𝐴𝑎𝑎𝑎𝑎
𝑐𝑐𝑑𝑑  in lower and upper pair of indices, the resulting identity can be 

rewritten as: 𝐴𝐴𝑎𝑎𝑎𝑎
𝑐𝑐𝑑𝑑 = 1

2
𝛿𝛿𝑎𝑎𝑎𝑎

𝑐𝑐𝑑𝑑. Hence the equation 𝐴𝐴𝑎𝑎𝑎𝑎
𝑑𝑑𝑐𝑐 − 𝐶𝐶𝑑𝑑𝑐𝑐ℎ𝐶𝐶ℎ𝑎𝑎𝑎𝑎 − 𝛿𝛿𝑎𝑎

𝑐𝑐𝛿𝛿𝑎𝑎
𝑑𝑑 = 0 is rewritten as 

𝐶𝐶𝑑𝑑𝑐𝑐ℎ𝐶𝐶ℎ𝑎𝑎𝑎𝑎 = 𝛿𝛿𝑎𝑎𝑎𝑎
𝑐𝑐𝑑𝑑.   � 

Definition 4.5. Let us call AC-manifold as a manifold of class 𝑅𝑅5 if its curvature tensor 
satisfies the equation: 

𝑅𝑅(𝑓𝑓2𝑋𝑋, 𝑓𝑓2𝑌𝑌)𝑓𝑓2𝑍𝑍 + 𝑅𝑅(𝑓𝑓2𝑋𝑋, 𝑓𝑓𝑌𝑌)𝑓𝑓𝑍𝑍 + 𝑅𝑅(𝑓𝑓𝑋𝑋, 𝑓𝑓2𝑌𝑌)𝑓𝑓𝑍𝑍 − 𝑅𝑅(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑌𝑌)𝑓𝑓2𝑍𝑍 = 0; ∀𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈
𝒳𝒳(𝑀𝑀).                     (4.7) 

Theorem 4.7. GK-manifold is a manifold of class 𝑅𝑅5 if and only if this manifold is a SGK-
manifold of the second kind and is on the space of adjoint G-structure 𝐶𝐶𝑎𝑎𝑑𝑑ℎ𝐶𝐶ℎ𝑎𝑎𝑐𝑐 = 𝛿𝛿[𝑎𝑎

𝑎𝑎 𝛿𝛿𝑐𝑐]
𝑑𝑑 . 

Proof. Let M be a GK-manifold of the second kind that is a manifold of class 𝑅𝑅5. Hence, 
Riemannian curvature tensor of such manifold satisfies the condition (4.7), which on the 
space of adjoint G-structure takes the form: 

𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 (𝑓𝑓2𝑋𝑋)𝑗𝑗(𝑓𝑓2𝑌𝑌)𝑗𝑗(𝑓𝑓2𝑍𝑍)𝑗𝑗 + 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗

𝑖𝑖 (𝑓𝑓2𝑋𝑋)𝑗𝑗(𝑓𝑓𝑌𝑌)𝑗𝑗(𝑓𝑓𝑍𝑍)𝑗𝑗 + 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 (𝑓𝑓𝑋𝑋)𝑗𝑗(𝑓𝑓2𝑌𝑌)𝑗𝑗(𝑓𝑓𝑍𝑍)𝑗𝑗 −

𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 (𝑓𝑓𝑋𝑋)𝑗𝑗(𝑓𝑓𝑌𝑌)𝑗𝑗(𝑓𝑓2𝑍𝑍)𝑗𝑗 = 0. 

Taking into account (3.7) and the form of the matrix f, the latter equation will be written 

in the form: 𝑅𝑅�̂�𝑎𝑎𝑎𝑐𝑐
𝑑𝑑 𝑋𝑋𝑎𝑎𝑌𝑌𝑐𝑐𝑍𝑍𝑎𝑎 + 𝑅𝑅𝑎𝑎�̂�𝑎𝑐𝑐̂

�̂�𝑑 𝑋𝑋𝑎𝑎𝑌𝑌𝑐𝑐𝑍𝑍𝑎𝑎 + 𝑅𝑅𝑎𝑎�̂�𝑎𝑐𝑐̂
𝑑𝑑 𝑋𝑋𝑎𝑎𝑌𝑌𝑐𝑐𝑍𝑍𝑎𝑎 + 𝑅𝑅�̂�𝑎𝑎𝑎𝑐𝑐

�̂�𝑑 𝑋𝑋𝑎𝑎𝑌𝑌𝑐𝑐𝑍𝑍𝑎𝑎 = 0. The resulting 

equation is fulfilled if and only if 𝑅𝑅𝑎𝑎�̂�𝑎𝑐𝑐̂
𝑑𝑑 = 𝑅𝑅𝑎𝑎�̂�𝑎𝑐𝑐̂

�̂�𝑑 = 0. According to (3.7): 

1) 𝐶𝐶𝑎𝑎𝑑𝑑ℎ𝐶𝐶ℎ𝑎𝑎𝑐𝑐 = 𝛿𝛿[𝑎𝑎
𝑎𝑎 𝛿𝛿𝑐𝑐]

𝑑𝑑 − 1
2

𝐹𝐹𝑎𝑎𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐;  2) 
2
3

𝛿𝛿𝑎𝑎
𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐 − 1

3
𝛿𝛿𝑎𝑎

𝑎𝑎𝐹𝐹𝑐𝑐𝑑𝑑 − 1
3

𝛿𝛿𝑎𝑎
𝑐𝑐𝐹𝐹𝑑𝑑𝑎𝑎 = 0.             (4.8) 
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Conversely, if 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
𝑑𝑑 = 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂

�̂�𝑑 = 0  fulfilled, then, since the equality 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
0 = 0  is also 

satisfied for the GK-manifold, applying the identity restoration procedure to the equations 
𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂

𝑖𝑖 = 0, we obtain identity (4.4), i.e. the manifold is the manifold of class 𝑅𝑅4.   � 
Theorem 4.5. GK-manifold of class R4 is an SGK-manifold of the second kind. 
Proof. Let M be a GK-manifold of class 𝑅𝑅4. Then, according to Theorem 4.4 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂

�̂�𝑑 = 0 
and considering (3.7), we have: 

𝑅𝑅𝑎𝑎𝑐𝑐�̂�𝑑
�̂�𝑎 = 𝑅𝑅𝑐𝑐𝑎𝑎𝑎𝑎

𝑑𝑑 = − 2
3

𝛿𝛿𝑐𝑐
𝑑𝑑𝐹𝐹𝑎𝑎𝑎𝑎 + 1

3
𝛿𝛿𝑎𝑎

𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐 + 1
3

𝛿𝛿𝑎𝑎
𝑑𝑑𝐹𝐹𝑐𝑐𝑎𝑎 = 0.              (4.5) 

Let us contract this equation by indices d and a; then we obtain (𝑛𝑛 + 1)𝐹𝐹𝑎𝑎𝑐𝑐 = 0 ⟹ 𝐹𝐹𝑎𝑎𝑐𝑐 =
0, i.e. the manifold is a SGK-manifold of the second kind.   � 

Theorem 4.6. Let M be a GK-manifold of class 𝑅𝑅4. Then on the space of adjoint G-
structure: 1) 𝐴𝐴𝑎𝑎𝑎𝑎

𝑐𝑐𝑑𝑑 = 1
2

𝛿𝛿𝑎𝑎𝑎𝑎
𝑐𝑐𝑑𝑑; 2) 𝐶𝐶𝑑𝑑𝑐𝑐ℎ𝐶𝐶ℎ𝑎𝑎𝑎𝑎 = 𝛿𝛿𝑎𝑎𝑎𝑎

𝑐𝑐𝑑𝑑. 

Proof. Let M be a GK-manifold that is a manifold of class 𝑅𝑅4. Then, according to Theorem 
4.4 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂

𝑑𝑑 = 𝑅𝑅𝑎𝑎𝑎𝑎𝑐𝑐̂
�̂�𝑑 = 0 and considering (3.7), we have: 

1) 𝑅𝑅𝑎𝑎𝑐𝑐�̂�𝑑
𝑎𝑎 = 𝐴𝐴𝑎𝑎𝑐𝑐

𝑎𝑎𝑑𝑑 − 𝐶𝐶𝑎𝑎𝑑𝑑ℎ𝐶𝐶ℎ𝑎𝑎𝑐𝑐 − 1
2

𝐹𝐹𝑎𝑎𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐 − 𝛿𝛿𝑐𝑐
𝑎𝑎𝛿𝛿𝑎𝑎

𝑑𝑑 = 0;   2) 𝑅𝑅𝑎𝑎𝑐𝑐�̂�𝑑
�̂�𝑎 = 𝑅𝑅𝑐𝑐𝑎𝑎𝑎𝑎

𝑑𝑑 = − 2
3

𝛿𝛿𝑐𝑐
𝑑𝑑𝐹𝐹𝑎𝑎𝑎𝑎 +

1
3

𝛿𝛿𝑎𝑎
𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐 + 1

3
𝛿𝛿𝑎𝑎

𝑑𝑑𝐹𝐹𝑐𝑐𝑎𝑎 = 0.                   (4.6) 

Let us contract the second equation by indices d and a; then we obtain (𝑛𝑛 + 1)𝐹𝐹𝑎𝑎𝑐𝑐 = 0 ⟹ 
𝐹𝐹𝑎𝑎𝑐𝑐 = 0, i.e. the manifold is a SGK-manifold of the second kind. Hence the equation (4.6:1) 
take the form: 𝐴𝐴𝑎𝑎𝑎𝑎

𝑑𝑑𝑐𝑐 − 𝐶𝐶𝑑𝑑𝑐𝑐ℎ𝐶𝐶ℎ𝑎𝑎𝑎𝑎 − 𝛿𝛿𝑎𝑎
𝑐𝑐𝛿𝛿𝑎𝑎

𝑑𝑑 = 0. Symmetrizing the latter equation, firstly, by 
indices a and b, and then by indices c and d, we get 𝐴𝐴(𝑎𝑎𝑎𝑎)

(𝑑𝑑𝑐𝑐) = 𝛿𝛿𝑎𝑎
𝑐𝑐𝛿𝛿𝑎𝑎

𝑑𝑑 = 1
2

𝛿𝛿𝑎𝑎𝑎𝑎
𝑐𝑐𝑑𝑑 . Due to the 

symmetry of tensor 𝐴𝐴𝑎𝑎𝑎𝑎
𝑐𝑐𝑑𝑑  in lower and upper pair of indices, the resulting identity can be 

rewritten as: 𝐴𝐴𝑎𝑎𝑎𝑎
𝑐𝑐𝑑𝑑 = 1

2
𝛿𝛿𝑎𝑎𝑎𝑎

𝑐𝑐𝑑𝑑. Hence the equation 𝐴𝐴𝑎𝑎𝑎𝑎
𝑑𝑑𝑐𝑐 − 𝐶𝐶𝑑𝑑𝑐𝑐ℎ𝐶𝐶ℎ𝑎𝑎𝑎𝑎 − 𝛿𝛿𝑎𝑎

𝑐𝑐𝛿𝛿𝑎𝑎
𝑑𝑑 = 0 is rewritten as 

𝐶𝐶𝑑𝑑𝑐𝑐ℎ𝐶𝐶ℎ𝑎𝑎𝑎𝑎 = 𝛿𝛿𝑎𝑎𝑎𝑎
𝑐𝑐𝑑𝑑.   � 

Definition 4.5. Let us call AC-manifold as a manifold of class 𝑅𝑅5 if its curvature tensor 
satisfies the equation: 

𝑅𝑅(𝑓𝑓2𝑋𝑋, 𝑓𝑓2𝑌𝑌)𝑓𝑓2𝑍𝑍 + 𝑅𝑅(𝑓𝑓2𝑋𝑋, 𝑓𝑓𝑌𝑌)𝑓𝑓𝑍𝑍 + 𝑅𝑅(𝑓𝑓𝑋𝑋, 𝑓𝑓2𝑌𝑌)𝑓𝑓𝑍𝑍 − 𝑅𝑅(𝑓𝑓𝑋𝑋, 𝑓𝑓𝑌𝑌)𝑓𝑓2𝑍𝑍 = 0; ∀𝑋𝑋, 𝑌𝑌, 𝑍𝑍 ∈
𝒳𝒳(𝑀𝑀).                     (4.7) 

Theorem 4.7. GK-manifold is a manifold of class 𝑅𝑅5 if and only if this manifold is a SGK-
manifold of the second kind and is on the space of adjoint G-structure 𝐶𝐶𝑎𝑎𝑑𝑑ℎ𝐶𝐶ℎ𝑎𝑎𝑐𝑐 = 𝛿𝛿[𝑎𝑎

𝑎𝑎 𝛿𝛿𝑐𝑐]
𝑑𝑑 . 

Proof. Let M be a GK-manifold of the second kind that is a manifold of class 𝑅𝑅5. Hence, 
Riemannian curvature tensor of such manifold satisfies the condition (4.7), which on the 
space of adjoint G-structure takes the form: 

𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 (𝑓𝑓2𝑋𝑋)𝑗𝑗(𝑓𝑓2𝑌𝑌)𝑗𝑗(𝑓𝑓2𝑍𝑍)𝑗𝑗 + 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗

𝑖𝑖 (𝑓𝑓2𝑋𝑋)𝑗𝑗(𝑓𝑓𝑌𝑌)𝑗𝑗(𝑓𝑓𝑍𝑍)𝑗𝑗 + 𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 (𝑓𝑓𝑋𝑋)𝑗𝑗(𝑓𝑓2𝑌𝑌)𝑗𝑗(𝑓𝑓𝑍𝑍)𝑗𝑗 −

𝑅𝑅𝑗𝑗𝑗𝑗𝑗𝑗
𝑖𝑖 (𝑓𝑓𝑋𝑋)𝑗𝑗(𝑓𝑓𝑌𝑌)𝑗𝑗(𝑓𝑓2𝑍𝑍)𝑗𝑗 = 0. 

Taking into account (3.7) and the form of the matrix f, the latter equation will be written 

in the form: 𝑅𝑅�̂�𝑎𝑎𝑎𝑐𝑐
𝑑𝑑 𝑋𝑋𝑎𝑎𝑌𝑌𝑐𝑐𝑍𝑍𝑎𝑎 + 𝑅𝑅𝑎𝑎�̂�𝑎𝑐𝑐̂

�̂�𝑑 𝑋𝑋𝑎𝑎𝑌𝑌𝑐𝑐𝑍𝑍𝑎𝑎 + 𝑅𝑅𝑎𝑎�̂�𝑎𝑐𝑐̂
𝑑𝑑 𝑋𝑋𝑎𝑎𝑌𝑌𝑐𝑐𝑍𝑍𝑎𝑎 + 𝑅𝑅�̂�𝑎𝑎𝑎𝑐𝑐

�̂�𝑑 𝑋𝑋𝑎𝑎𝑌𝑌𝑐𝑐𝑍𝑍𝑎𝑎 = 0. The resulting 

equation is fulfilled if and only if 𝑅𝑅𝑎𝑎�̂�𝑎𝑐𝑐̂
𝑑𝑑 = 𝑅𝑅𝑎𝑎�̂�𝑎𝑐𝑐̂

�̂�𝑑 = 0. According to (3.7): 

1) 𝐶𝐶𝑎𝑎𝑑𝑑ℎ𝐶𝐶ℎ𝑎𝑎𝑐𝑐 = 𝛿𝛿[𝑎𝑎
𝑎𝑎 𝛿𝛿𝑐𝑐]

𝑑𝑑 − 1
2

𝐹𝐹𝑎𝑎𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐;  2) 
2
3

𝛿𝛿𝑎𝑎
𝑑𝑑𝐹𝐹𝑎𝑎𝑐𝑐 − 1

3
𝛿𝛿𝑎𝑎

𝑎𝑎𝐹𝐹𝑐𝑐𝑑𝑑 − 1
3

𝛿𝛿𝑎𝑎
𝑐𝑐𝐹𝐹𝑑𝑑𝑎𝑎 = 0.             (4.8) 

 

Let us contract (4.8:2) by indices d and a; then we obtain 
2
3
(𝑛𝑛 + 1)𝐹𝐹𝑏𝑏𝑏𝑏 = 0 ⟹ 𝐹𝐹𝑏𝑏𝑏𝑏 = 0, i.e. 

the manifold is a SGK-manifold of the second kind. Hence the equation (4.8:1) take the form 
𝐶𝐶𝑎𝑎𝑎𝑎ℎ𝐶𝐶ℎ𝑏𝑏𝑏𝑏 = 𝛿𝛿[𝑏𝑏𝑎𝑎 𝛿𝛿𝑏𝑏]𝑎𝑎 . 

Conversely, if relations (4.8) are satisfied for a SGK-manifold of the second kind, then 

the components of the Riemannian curvature tensor meet the conditions 𝑅𝑅𝑎𝑎�̂�𝑏𝑏𝑏̂
𝑎𝑎 = 𝑅𝑅𝑎𝑎�̂�𝑏𝑏𝑏̂

�̂�𝑎 = 0. 
Thus, the manifold is a manifold of class 𝑅𝑅5 [15]. Since a SGK-manifold of the second kind 
is a GK-manifold, we get the required condition.   � 

Corollary. GK-manifold of class 𝑅𝑅5 of 3 dimension is a Kenmotsu manifold. 
Proof. Contract the equation 𝐶𝐶𝑎𝑎𝑎𝑎ℎ𝐶𝐶ℎ𝑏𝑏𝑏𝑏 = 𝛿𝛿[𝑏𝑏𝑎𝑎 𝛿𝛿𝑏𝑏]𝑎𝑎 , firstly, by indices a and b, and then by 

indices c and d, we get ∑ |𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏|2𝑎𝑎,𝑏𝑏,𝑏𝑏 = 1
2
𝑛𝑛(𝑛𝑛 − 1). From the obtained equation it follows 

that for 𝑛𝑛 = 1 we have 𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏 = 0, i.e. the manifold is the Kenmotsu manifold.   � 

References 

1. S. H. Kobayasi, K. Nomidzu, Osnovy differentsial'noy geometrii, 2, 414 (Moscow, 
Nauka, 1981) 

2. J. W. Gray, Some global properties of contact structures, Ann. Math., 69(2), 421 – 450 
(1959) 

3. S. Sasaki, On differentiable manifolds with certain structures which are closely related 
to almost contact structures, Tôhoku Math. J., 12(3), 456 – 476 (1960) 

4. D. E. Blair, Contact manifolds in Riemannian geometry, Lect. Notes Math., 509, 146 
(1976) 

5. J. Bouzon, Structures Presque cocomplexes, Univ. et Politechn. Torino. Rend. Sem. 
Nat., 65(24), 53 – 123 (1964) 

6. S. S. Chern, Pseudo-groupes continus infinis. Colloq. Internat. Centre nat. rech. Scient. 
52, 119 – 136 (Strasbourg, Paris, 1953)  

7. K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J., 24, 93 
– 103 (1972) 

8. S. Tanno, The automorphisms groups of almost contact Riemannian manifolds Tôhoku 
Math. J., 21, 21 – 38 (1969) 

9. R. L. Bishop, B. O’Neil, Manifolds of negative curvature. Trans. Amer. Math. Soc., 145, 
1 – 50 (1969) 

10. S. V. Umnova, Geometriya mnogoobraziy Kenmotsu i ikh obobshcheniy: Dis. … kand. 
fiz.-mat. nauk., 88 (Moscow, MPGU, 2002) 

11. B. Najafi, N. H. Kashani, On nearly Kenmotsu manifolds. Turkish Journal of 
Mathematics, 37, 1040 – 1047 (2013) http://journals.tubitak.gov.tr/ma th/ (Last accessed 
12.12.2020) 

12. M. B. Banaru. O giperpoverkhnostyakh Kenmotsu spetsial'nykh ermitovykh 
mnogoobraziy Sib. matem. zhurn., 45(1), 11–15 (2004) 

13. A. Abu-Salem, A. R. Rustanov, Some aspects of the geometry of Generalized Kenmotsu 
manifolds. Far East Journal of Mathematical Sciences (FJMS), 103(9), 1407-1432 
(2018) http://www.pphmj.com (Last accessed 22.12.2020) 
http://dx.doi.org/10.17654/MS103091407. 

14. A. Abu-Salem, A. R. Rustanov, Analogs of Gray Identities for the Riemannian 
Curvature Tensor of Generalized Kenmotsu Manifolds, International Mathematical 

11

E3S Web of Conferences 244, 09005 (2021) https://doi.org/10.1051/e3sconf/202124409005
EMMFT-2020



 

Forum, 12(2), 87–95 HIKARI Ltd (2017) www.m-hikari.com (Last accessed 
22.12.2020) https://doi.org/10.12988/imf.2017.611149. 

15. A. Abu-Saleem, A. R. Rustanov, Curvature Identities Special Generalized Manifolds 
Kenmotsu Second Kind, Malaysian Journal of Mathematical Sciences, 9(2), 187-207 
(2015) http://einspem.upm.edu.my/journal (Last accessed 25.12.2020) 

16. A. Abu-Salem, A. R. Rustanov, S. V. Kharitonova, Svoystva integriruyemosti 
obobshchennykh mnogoobraziy Kenmotsu, Vladikavkazskiy matematicheskiy zhurnal,, 
20(3), 4-20 (2018) DOI 10.23671/VNC.2018.3.13829. 

17. V. F. Kirichenko, Differentsial'no-geometricheskiye struktury na mnogoobraziyakh. 
Izdaniye vtoroye, dopolnennoye. Odessa: «Pechatnyy Dom»,  458 (2013) 

18. V. F. Kirichenko, A. R. Rustanov, Differentsial'naya geometriya kvazi-sasakiyevykh 
mnogoobraziy, Matematicheskiy sbornik, 193(8), 71-100 (2002) 

19. A. Abu-Saleem, I. D. Kochetkov, A. R. Rustanov, O nekotorykh podklassakh 
obobshchennykh mnogoobraziy Kenmotsu, IOP Conf. Series: Materials Science and 
Engineering, 918, 012062 (2020)  doi:10.1088/1757-899X/918/1/012062. 

20. A. Abu-Salem, A. R. Rustanov, S. V. Kharitonova, F. Aksioma, golomorfnykh (2r+1)-
ploskostey dlya obobshchennykh mnogoobraziy Kenmotsu. Vestnik Tomskogo 
gosudarstvennogo universiteta. Matematika i mekhanika., 66, 5 – 3 (2020) 

21. A. Abu-Saleem, I. D. Kochetkov, A. R. Rustanov, Strukturnyye tenzory obobshchennykh 
mnogoobraziy Kenmotsu, IOP Conf. Series: Materials Science and Engineering, 918, 
012062 (2020)  doi:10.1088/1757-899X/918/1/012063 

12

E3S Web of Conferences 244, 09005 (2021) https://doi.org/10.1051/e3sconf/202124409005
EMMFT-2020


