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Abstract. To investigate the small-signal stability of automatic generation control (AGC) system with
constant communication delay, this paper establishes its state-space based on Padé approximation and
conducts eigenvalue calculation. Then, by tracking the change of eigenvalues with time delay, the time-
delay margin can be confirmed. Different controller parameters have complex influence on time delay

margin and damping performance, so this paper utilizes particle swarm optimization (PSO) to obtain the
optimal PI controller parameters to derive delay margin largest and an ideal damping performance. Finally,
the simulation studies verify the correctness of time-delay margin calculation and indicate the AGC system

has an ideal damping performance with optimal PI controller parameters

1 Introduction

Automatic generation control (AGC) plays a crucial role
in maintaining frequency stability and tie-power
exchange at scheduled values between different control
areas. With the development of modern power system,
AGC requires a wide area open communication network
to transmit information. But it brings some unavoidable
unreliable factors, such as time delay, packet losses, etc.
It should be noted that time delay is one of the most
unreliable factors [1]-[3]. Large delays over delays
margin can threaten the stability of the AGC system.

The research on time-delay AGC system has
attracted much attention in these years. There are several
methods for investigating the properties of time-delayed
AGC system. These methods can be divided into two
categories which are named frequency-domain methods
and time-domain methods. The frequency-domain
methods can recognize the stability of the AGC system
by calculating all the eigenvalues. A well-known
sufficient condition for the stability of a closed-loop
system is that all eigenvalues lie in the left half s-plane.
In [4], a method for calculating time delay margin is
proposed, and the core of this approach is to eliminate
exponential terms in characteristic equation without
making any approximation and form a new regular
polynomial. Besides calculating delay margin, this paper
also investigates the influence of some parameters of
proportional-integral (PI) controller on delay margin.
Base on [4], a graphical method applied to compute all
stabilizing PI controller gains for a constant delay is
proposed. The main aim of the approach is to extract the
stable region and the stable boundary trajectory from the
parameter space of the PI controller with user-defined
gain and phase margin [5]. Authors in [6] proposes a
method to analyze the stability of AGC system and

* Corresponding author: zhoutaonjust@njust.edu.cn

estimate delay margins. The main result is nicely based
on a sufficient and necessary condition. This paper takes
the real-world AGC system of East China Power Grid as
an example. The simulation results verify the
effectiveness of the method. Although the frequency-
domain methods can get an accurate delay margin, it is
important to point out that they can only deal with the
constant delay.

The time-domain methods are implemented to
analyze the stability of AGC system with time-varying
and constant delay. They utilize Lyapunov stability
theory and linear matrix inequalities (LMIs) to estimate
the delay margin. A new stability criteria of time-delay
AGC system based on Lyapunov-Krasovski (L-K) is
provided in [7] to generate less conservative stability test
conditions in the form of LMI. Based on L-K and
truncated  second-order  Bessel-Legendre  (B-L)
inequality, [8] proposes a new method to analyze the
stability of PI-type AGC system with time-varying delay.
The simulation of two-area interconnected power system
verifies the effectiveness and superiority of the method.
A sufficient delay-distribution-dependent stability and
stabilization criterion is provided in [9]. This paper also
provides the gain of Pl-type AGC and the allowable
upper bound of the communication delay simultaneously
while preserving the desired performance. Considering
the practical AGC is a sampled-data system, author in
[10] undertakes stability analysis of AGC with both
sampling and time-varying delay. Based on Wirtinger
based integral inequality and its affine version, this paper
proposes a new stability criterion for linear system with
both sampling and transmission delay.

The purpose of this paper is to calculate the time-
delay margin of AGC system. Moreover, it utilizes
particle swarm optimization (PSO) to obtain the optimal
PI controller parameters to derive delay margin largest

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).



E3S Web of Conferences 252, 01022 (2021)
PGSGE 2021

https://doi.org/10.1051/e3sconf/202125201022

and an ideal damping performance. The main
contributions of this paper can be generalized as follows:

1) In this paper, the AGC system state-space model
based on Padé approximation is established to realize the
linearization of AGC system. According to the model,
the state space equation of the system is derived. The
eigenvalues of AGC system were obtained by solving
the characteristic equation.

2) A well-known sufficient condition for the stability
of a closed-loop system is that all eigenvalues lie in the
left half s-plane. Based on the proposed model, tracking
eigenvalues with the change of time delay is an effective
method to obtain delay margin. Moreover, PSO is
introduced to obtain the optimal PI controller parameters
for making the delay margin largest and having an ideal
damping performance.

3) Based on the proposed model, the validity of
eigenvalue analysis is verified by time-domain
simulation and Prony analysis. Then, the model is
applied to root locus analysis and delay margin
calculation. Finally, the parameters of PI controller are
designed by PSO.

The remaining parts of this paper are organized as
follow. Section 2 proposes the dynamic model of AGC
system with constant delays. Section 3 introduces time-
delay margin computation and controller design based
on root locus analysis. A case study is given in Section 4
to illustrate the correctness of the proposed method.
Finally, conclusions are drawn in Section 5.

2 Linearized model of time-delay AGC
system

2.1 AGC system containing time delay

The real power system including AGC system has
complex and nonlinear characteristics. So, it is usually
described as a set of nonlinear differential equations.
When a small disturbance occurs in AGC system, the
linearized model of AGC can be established. The linear
model is enough to assess the small-disturbance stability
of AGC system around an equilibrium point. The
dynamics of single-area AGC system containing time
delay are presented as follows [11]-[13]

{x(z) = Ax(¢)tBu(t) + FAP, (1) W
y(#) = Cx(1)

where
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Since no power exchange of net tie-line in the one-
area LFC scheme, the output of the system, namely area
control error (ACE), is defined as

ACE = pAf @)

where £ >0 is the frequency bias factor. As shown in
fig. 1, the delayed ACE signal is the input of the PI
controller. The control command u(t) can be expressed
as

u(t)=K,ACE+K, [ ACE

3
=Ky(t—7)=KCx(1-7) ®

where K , K, and K, represent a matrix including
[K, K,] , integral gain and proportional gain
respectively. And the closed-loop dynamic model of

AGC system is obtained as
x(t) = Ax()+A,x(t —7)+ FAP,(t) 4

where 4, = BKC

Considering the behavior of communication delay
which is described in Fig. 1, the communication delay
from ACE to PI controller is represented by exponential
block ¢ . Due to the transcendental term e . AGC
system becomes an infinite dimensional system, which
brings difficulties to the eigenvalue calculation and
controller design of the AGC system.

i Af
Ms+D

p,
s

Fig. 1. Dynamic model of single-area AGC system.

2.2 State-space model based on Padé
approximation

Padé approximation (PA) is an effective method to
approximate the original analytic function better than
truncating the power series of the original analytic
function. Base on PA, the transcendental term can be
transformed into finite-dimension polynomials [14]-[15].

¢ ~P(s)= by+hrs+-- .+b/.(Ts)/' e '+b,(TS)’ (5)

a, +alrs+~~~+aj(rs)j +o+a,(zs)*
where / and k represent the order of PA. / has the same
value as k in general case. a; and b, are corresponding
coefficients.

Since fourth-order PA has high enough accuracy, this
paper takes the fourth order PA as an example to
demonstrate and deduce. The equation of fourth-order
PA for e™ is
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It should be noted that the fourth-order PA brings
four additional state variables in the time-delay block.

The system diagram for the part of PA is shown in Fig. 2.

Fig. 2. Dynamic model of fourth-order PA.

With this approximation, it is possible to obtain
equations of AGC system as shown in (7) which
provides an appropriate depiction of a single time delay
included in state variable:

X = AX + FAP, (7)

where
T
X:[Af AP, AP, [ACE Ad, Ad, Ad, AdJ

;Irepresents the state matrix of a single-area AGC
system.

The eigenvalue of the system (7) are the solutions of
the characteristics equation.

3 Time margin computation and
controller design based on root locus
analysis

3.1 Delay margin computation

Determining whether the system delay-independent or
delay dependent stable is the core of the research on
stability of time-delay system. For delay-independent
stability, the system is stable for all finite delays. In a
delay-dependent stability analysis, there are existing a
delay margin 7 which ensure the system is
asymptotically stable for 7 <7~ and indicate the system

is unstable for 7 > 7" . From the general stability theory
of dynamic system, a well-known sufficient condition is
that all roots of Equation. (8) lie in the left half s-plane to
be asymptotically stable. In the other words, when the
Equation. (8) has roots (if any) on the imaginary axis, it
is sufficient to find the delay-margin value. So, for delay
margin of a fixed parameters AGC system, tracking the
change of characteristic root corresponding to dominant
mode is an effective method. As shown in Fig. 3, the
value of time-delay margin is 4.2750. Time-domain
simulations with different time delays are presented in

Fig. 4. It shows the frequency response is stable if
7=4.3500 orr =4.2000 . When 7 =4.2750 . The curve
gets divergent and the system is unstable. The time-
domain simulation results verify the correctness of delay
margin.

{7 =42750
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Fig. 3. Root locus of dominant mode with time delay
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Fig. 4. Frequency response curves with different delays

3.2 PI controller design

PI controller parameters also have great influence on
eigenvalues and oscillation characteristics. With the

change of K, and K|, the delay margin will change

subsequently. As shown in Tab. 1, the delay margin 7’
is 4.5910 for Kp=1.5, K=0.8. However, the simulation
result presented in Tab. 1 indicates that the delay margin
r is 3.8865 for Ky=1.6, K=0.9. Therefore, it is
essential to find the optimal PI controller parameters to
derive delay margin largest and an ideal damping
performance

Table 1. Time-delay margin with different P1I.

PI Delay Margin 1'(S)
K, =15,K, =08 4.5910
K, =1.6,K, =09 3.8865

In order to achieve the best stability performance,
this paper utilizes PSO to obtain the optimal PI
controller parameters. The fitness function is selected as
the delay margin, particle is selected as the proportional
gain and the integral gain. The steps for determining
maximal allowable transmission delay are shown in Fig.
S.
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A
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Output delay margin

End

Fig. 5. The step for determining maximal allowable
transmission delay

Step 1: Initial AGC system and controller parameter.
Step 2: Limit the range of K and KX .

Step 3: Calculate the time-delay margin.
Step 4: Upgrade K, and K, for the next calculation.

Step 5: Upgrade time-delay margin and optimal K|

and K.

Step 6: Determine whether the system converges, if
the system converges, outputting delay margin and the
optimal K and K|, otherwise, return Step 2.

4 Case study

Case studies are carried out based on one-area AGC
system and this section covers three parts. Firstly, the
eigen analysis is conducted by utilizing the proposed
state-space model. Its eigenvalue analysis is verified by
time-domain simulations and Prony analysis. Then the
model is applied to root locus analysis and delay-margin
calculation. Finally, PSO is used to design PI controller
parameters for the best stability performance. The AGC
system parameters are given in Tab. 2.

Table 2. Parameters of AGC system

Parameter Value

T, 0.2s
T, 0.2s

M 8s
D 1
K, 1.5
K, 0.9
B 5
R 0.09

4.1 Prony analysis and time-domain verification

Fig. 4 presents the time-domain simulation with different
delays near delay margin. Based on the proposed model,
eigenvalues with 7=3.9 and 7 =4.1 are calculated and
given in Tab. 3 respectively. It shows the one-area AGC
system has 8 eigenvalues, and when 7=3.9 , all
eigenvalues are in left half s-plane which indicates the
system is stable. As for 7=4.1, one of eigenvalues
changes to the right plane and the system become
unstable. The results of eigen analysis are matched with
the time domain simulation.

Table 3. Eigenvalues of AGC system with (7=3.9s and 7=4.1s )

A, (r=39s)

i

A (r=4.1s)

-8.5561
-2.8941+j3.7982
-2.8941-j3.7982
-0.1894+j2.0406
-0.1894-j2.0406

-0.5221
-0.0037+j0.4485
-0.0037-j0.4485

-8.5059
-2.8107-j3.7366
2.8107+j3.7366
-0.1759+{1.9675
-0.1759-1.9675
-0.5317
0.0040+j 0.4654
0.0040-j0.4654

Prony analysis is an extended version of Fourier
analysis. It can directly estimate the oscillation
frequency, damping, amplitude and relative phase of the
system by the response under the given input signal.
Prony analysis is applied in response curves with
7=3.9s and 7 =4.1s . The results are presented in Tab.
4 and Tab. 5. According to tables, Prony analysis verifies
the rightness of eigen analysis including damping
coefficient, frequency component and angular velocity.

Table 4. Prony analysis results ( 7=3.9s )

4, o, /i o,
4.4314x107* -0.0037 0.0777 0.4884
9.5314x107° -0.2967 0 0
3.0977x107° -0.5468 0 0
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Table 5. Prony analysis results (7 =4.1s)
4, o, /i @,
4.5385x10™ 0.0040 0. 0.4654
6.8553x107° -0.1570 0 0

4, is the amplitude coefficient, o, is the damping coefficient, f; is

the frequency component and @, is the angular velocity.

4.2 Root locus analysis and margin
computation

Based on the eigen-analysis model, root locus analysis is
performed for this system. According to Fig. 6, all
eigenvalues are moving from the left half s-plain to the
right with the delay increasing and the system is
becoming unstable. Among these eigenvalues,
eigenvalue of domain mode firstly crosses imaginary
axis, so that it determines the time-delay margin of one-
area AGC system. For the simulation system with given
parameters, the margin is 3.9947s. The frequency
response with different delays near margin is presented
in Fig. 7. This demonstrates the correctness of margin
results.

15
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Fig. 6. Root locus with time delay.
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Fig. 7. Frequency response curves with different delays near
delay margin

4.3 Controller parameter tuning and result
analysis

As can be seen from Tab. 6, for the AGC system with
time delay, with the change of PI parameters, the effect
of the PI parameters on the delay margin becomes
obvious. A large set of PI controller parameters, the
delay margin is calculated using Equation. (8) and the

root locus. The results show that 7~ decreases with the
increase of K, for a fixed K,. This indicates that the

increase of K, causes instability in AGC system. When
K, is fixed, the effect of K, on 7" has two different
modes. For all values of K, , when K, is within a
certain range, 7 increases with the increase of K, .
However, if K, is beyond this range, 7~ decreases with
the increase of K.

In order to make the delay margin largest and have
an ideal damping performance, this paper utilizes PSO to
obtain the optimal PI controller parameters. The results
are shown in Tab. 7. The Fig. 8 shows that the delay
margin converges gradually with the increase of iteration.
The optimal PI controller parameters are K, =1.0319,

K;=0.1 and delay margin is 43.400. This indicates

AGC system can remain stable under large time delay.
Besides, the PI controller is designed based on the
standard value. When the parameters of the real system
deviate from the standard value, the delay margin of
AGC system also change accordingly. So, it is necessary
to ensure that the controller has a greater delay stability
margin than the delay of real system when designing the
controller.

Table 6. Delay margin results for various values of KP and KI

7'(s) K,

K, 0.1 0.3 0.5 0.7 0.9 1.1

0.1 38.318 | 12.305 | 7.0950 | 4.8590 | 3.6180 | 2.8260
0.3 40.044 | 12.880 | 7.4430 | 5.1101 | 3.8115 | 2.9815
0.5 41.461 | 13.352 | 7.7262 | 5.3121 | 3.9675 | 3.1105
0.7 42.525 | 13.707 | 7.9388 | 5.4634 | 4.0852 | 3.2058
0.9 43.185 | 13.925 | 8.0686 | 5.5562 | 4.1565 | 3.2634
1.1 43.375 | 13.975 | 8.1056 | 5.5788 | 4.1740 | 3.2758
1.3 42.986 | 13.857 | 8.0250 | 5.5207 | 4.1257 | 3.2351

Table 7. Delay margin results for the optimal of KP and KI

PI Delay Margin 7" (s)
K, =1.0319
43.400
K,=0.1
40 - —
@
35
=
"B
330 - 1
=
&2
L
a
20
20 40 60 30 100 120
[teration

Fig. 8. Convergence curve of delay margin
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5 Conclusion

In this paper, the focus is drawn on the delay-dependent
stability of AGC systems. The state-space model is
established based on Padé approximation to conduct
eigenvalue calculation. Eigenvalue analysis is verified
by time-domain simulations and Prony analysis. In order
to verify the results of delay margin, a simulation study
has been carried out in case study. Finally, this paper
designs controller parameters for the best stability. The
following observations and comments can be drawn
from the results:

1) This paper establishes the model to analyze the
influence of time delay on AGC system and calculate its
eigenvalues. The results of time domain simulation and
Prony analysis verify the correctness of the model.

2) The time-delay root locus of eigenvalues reflects
the stability of AGC system with time delay increasing,
so that the time-delay margin can be obtained, which is
an important stability parameter of AGC system.

3) The influence of different controller parameters on
the stability of the system is complex. In this paper, the
controller parameters are designed based on particle
swarm optimization algorithm with the goal of
maximizing the delay margin. The obtained parameters
can maximize the system delay margin and improve the
robustness and stability of the system.
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