Calculation of the building of refrigeration equipment for progressive destruction

Elvira Egereva
Dmitry Gerasimov

1 Moscow State University of Civil Engineering, Yaroslavskoe shosse, 26, 129337 Moscow, Russia

Abstract. The purpose of the calculation is to substantiate the fulfillment of the mechanical safety requirements for the design solutions of the building of refrigeration machines. The calculation confirms that in the process of operation, the building and its foundation will not reach the limit state in terms of strength, stability and deformations with the variants of simultaneous action of loads and impacts taken into account by this calculation.

1 Introduction

The forces arising in the building structures from the impact of the building on the foundation are calculated on the assumption of the elastic work of the foundation of the building.

2 Materials and methods

To assess the stability of the load-bearing structures of buildings against progressive collapse, two scenarios are considered as scenarios of local hypothetical destruction:
- the first scenario: to exclude from work the element of the column in the C/2 axis at el. minus 4,200 (in Figure 1).
Under the scenario of destruction of progressive collapse when the column is turned off from operation, the value of the coefficient K does not exceed 0.953 (no more than 95.3% of the strength is exhausted). The distribution of the coefficients for the use of the bearing capacity of reinforced concrete structures is shown in Figure 2.

The loads corresponding to the reactions in the removed column, taking into account the given dynamics coefficient to take into account the suddenness of the removal, are presented in Figure 3.

Figure 3 shows the following loads:
- longitudinal force $N=878,02$ kN;
- moment $M_x=35,875$ kN*m;
- moment $M_y = 13,074$ kN*m;
- moment $M_z = 0.05$ kN*m;
- transverse force $Q_x = 6,126$ kN;
- transverse force $Q_y = 13,689$ kN.

Forces N, M, Q in columns and floor beams when checking resistance to progressive collapse according to scenario No. 1 after removing the column are shown in Figures 4 - 8.

Forces in the floor slab at elev. minus 0.100 when checking resistance to progressive collapse according to the scenario after the removal of the column are presented in Figures 9 - 16. The direction of force output N_x1 in the elements of the floor slab coincides with the direction of the global X axis (along the alphabetic coordination axes) [11-16].

Fig. 4. Longitudinal force N in columns and floor beams when checking resistance to progressive collapse in accordance with the scenario, kN.

Fig. 5. The bending moment of M_y in the columns and beams of the ceiling when checking the resistance to progressive collapse in accordance with the scenario, kN*m.
Fig. 6. Bending moment M_z in columns and floor beams when checking the resistance to progressive collapse in accordance with the scenario, kN*m.

Fig. 7. Bending moment Q_y in columns and floor beams when checking resistance to progressive collapse in accordance with the scenario, kN.
Fig. 8. Transverse force Q_z in columns and floor beams when checking resistance to progressive collapse in accordance with the scenario, kN.

Fig. 9. Stresses σ_x in the lower surface of the floor slab at minus 0.100 when checking the resistance to progressive collapse in accordance with the scenario, kPa.

Fig. 10. Stresses σ_x on the upper surface of the plate at minus 0.100 when checking the resistance to progressive collapse in accordance with the scenario, kPa.
Fig. 11. Stresses σ_y in the lower surface of the floor slab at minus 0.100 when checking the resistance to progressive collapse in accordance with the scenario, kPa.

Fig. 12. Stresses σ_y in the upper surface of the floor slab at minus 0.100 when checking the resistance to progressive collapse in accordance with the scenario, kPa.

Fig. 13. The moment M_x in the overlap plate at minus 0,100 when checking the resistance to progressive collapse in accordance with the scenario, kN*m.
Fig. 14. The moment of M_y in the floor slab at minus 0.100 when checking the resistance to progressive collapse in accordance with the scenario, kN*m.

Fig. 15. The transverse force Q_x in the floor slab at minus 0.100 when checking the resistance to progressive collapse in accordance with the scenario, kN.

Fig. 16. The transverse force Q_y in the floor slab at minus 0.100 when checking the resistance to progressive collapse in accordance with the scenario, kN.

Vertical displacements of columns, beams and floor slabs when checking resistance to progressive collapse according to scenario No. 1 are shown in Figure 17.
Vertical displacements of columns and floor beams when checking resistance to progressive collapse according to scenario No. 1 are shown in Figure 18.

The maximum allowable deflection is taken equal to 1/50 of the span [18].
Vertical displacements of floor slabs and beams caused by local destruction according with the scenario are determined taking into account SP 52-103-2007 [19]. The initial modulus of elasticity of concrete is assigned taking into account reduction factors [20-22].

![Fig. 17. Vertical movement of columns, beams and slabs of building slabs when checking the resistance to progressive collapse according to the scenario, mm](image17)

![Fig. 18. Vertical movements of columns and beams of floor slabs when checking resistance to progressive collapse according to the scenario, mm.](image18)

The span between the columns in the B/2-D/2 axes is $l_0 = 11.6$ m. The vertical maximum deflection at the span $l = 11.6$ m is $f_{pl} = l/50 = 11.6/50 = 0.232$ m = 232,0 mm. The maximum deflection of the floor slab at elev. minus 0,100, caused by local destruction according to the scenario, taking into account the reducing coefficient of the concrete deformation modulus, is $f = 11.2$ mm, which is less than the ultimate deflection equal to $f_{pl} = 232,0$ mm.

3 Conclusion

The obtained results of calculating the building frame for progressive collapse substantiate the fulfillment of the mechanical safety requirements for the load-bearing elements of frame buildings, and also show that when one column of the lower floor excluded from the frame, the internal forces will be redistributed, as well as significant displacements of the floor elements, but the building, in as a whole, will not collapse. The calculation confirms that during operation the building of refrigeration machines and its base will not reach the
limit state in terms of strength, stability and deformations under the variants of simultaneous action of loads and impacts taken into account by this calculation.

Based on this calculation, we see that under given loads on the building, the structure retains its properties and can operate in normal mode without a threat to human life and health and the environment.

References

2. Best practices for reducing the potential for progressive collapse in buildings (NIST, February, 2007)
3. Review of international research on structural robustness and disproportionate collapse (London, Department for Communities and Local Government, 2011)
4. UFC 4-023-03. Unified facilities criteria. Design of buildings to resist progressive collapse (Including Change 3, 2016)
5. Seismic Rehabilitation of Existing Buildings (ASCE 41–2007)
7. GSA “Alternate path analysis & design guidelines for progressive collapse resistance”