THEORYTICAL APPROACH ON APPLICATION OF GENERALIZED CLOSED SETS ENVIRONMENTAL LIFESTYLE USING r-NEIGHBOURHOOD IDEALSPACES

THARMAR S1, Veerasivaji R2 & Senthil kumar R3

1,3Department of Mathematics, Mohamed Sathak Engineering College, Kilakarai, Tamil Nadu, India.
2Assistant Professor, Department of Mathematics, Sri Sankara Arts and Science College, Enathur Kanchipuram, India.

Abstract. We introduce in this paper, the new notion of R_Ig-closed sets and obtain some of its characterizations in ideal r-Neighbourhood space and give nice results on R_Ig-closed sets with examples. Finally, we discuss application of R_Ig-closed sets.

Keywords: Relation, I_r-closed set, R_Ig-closed set, R_Ig-open set.

1. Introduction

In 1970, the notion of generalized closed sets introduced by Levine [5] and various Generalized concepts in topology were introduced by Levine [5] and various authors were making modifications in generalized concepts. Lin[6] and Yao[9] introduced the concept of rough sets in neighbourhood system and Hosny[2] generated different topologies by the concept of idealization of j-approximation spaces.

In this paper, we introduce the new notion of R_Ig closed sets and obtain some of its characterizations in ideal r-Neighbourhood space and give nice results on R_Ig closed sets with examples. Finally, we discuss application of R_Ig closed sets with an example.

1Corresponding author: tharmar11585@gmail.com * vravag@gmail.com, srisenthil2011@gmail.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
2. Preliminaries

Definition 2.1. [3] A non-empty collection I of subsets of a set U is called an ideal on U, if it satisfies the following conditions.

1. $A \in I$ and $B \in I \Rightarrow A \cup B \in I$.
2. $A \in I$ and $B \subset A \Rightarrow B \in I$.

Definition 2.2. [6] Let U be a non-empty finite set and R be an arbitrary binary relation on U. The r-neighbourhood of $x \in U$ ($N_R(x)$) is defined as r-neighbourhood: $N_R(x) = \{y \in U : xRy\}$.

Definition 2.3. [6] Let U be a non-empty finite set and R be an arbitrary binary relation on U and $\sum : U \rightarrow P(U)$ be a mapping which assigns for each $x \in U$ its r-neighbourhood in $P(U)$. The triple (U, R, \sum) is called a r-neighbourhood space (in briefly, r-NS).

Theorem 2.4. [6] Let U be a r-NS and $A \subset U$. Then, the collection $\tau = \{A \subset U : \forall p \in A, N_R(p) \subset A\}$ is a topology on U.

Definition 2.5. [2] Let U be a r-NS and a subset $A \subset U$ is called r-open set if $A \in \tau$ and the complement of r-open set is called r-closed set.

Definition 2.6 [2] Let U be a r-NS and I be an ideal on U. Then, the collections $\tau^I = \{A \subset U : \forall p \in A, N_R(p) \in I\}$ is a topology on U.

The r-Neighbourhood space with an ideal I is called ideal r-NS.

Definition 2.7 [2]

1. Let U be an ideal r-NS and a subset $A \subset U$ is called I_r-open set if $A \in \tau^I$ and the complement of I_r-open set is called I_r-closed set.
2. $R^I_r(A) = \{G \in \tau^I : G \subset A\}$ ($R^I_r(A)$ is called I_r-lower approximations)
3. $\overline{R^I_r(A)} = \{F \in (\tau^I)^c : A \subset F\}$ is called I_r-upper approximations.

Lemma 2.8. [2] Let U be an ideal r-NS and $A, B \subset U$. Then

1. $R^I_r(A) \subset A \subset \overline{R^I_r(A)}$.
2. $A \subset B \Rightarrow \overline{R^I_r(A)} \subset \overline{R^I_r(B)}$.
3. $A \subset B \Rightarrow \overline{R^I_r(A)} \subset \overline{R^I_r(B)}$.
4. $\overline{R^I_r(R^I_r(A))} = \overline{R^I_r(A)}$.
5. $\overline{R^I_r(A)} = \overline{R^I_r(A)}$.

3. RI- g-CLOSED SETS

Definition 3.1 Let U be an ideal r-NS and a subset A_r is said to be R_1-g-closed set if $\overline{R^I_r(A_r)} \subset O_r$ whenever $A_r \subset O_r$ and O_r is I_r-open.

The complement of R_1-g-closed set is called R_1-g-open set.
Example 3.2 Let $U=\{\text{Food, Health, Exercise, Sleep}\}$ and we get the relation $R=\{(\text{Food, Food}), (\text{Food, Health}), (\text{Health, Health}), (\text{Health, Exercise}), (\text{Exercise, Exercise}), (\text{Exercise, Sleep}), (\text{Exercise, Health}), (\text{Sleep, Sleep}), (\text{Sleep, Health})\}$ and the ideal $I=\{\emptyset, \text{Health}\}$.

The neighbourhood of Food is $\{\text{Food, Health}\}$, neighbourhood of Health is $\{\text{Health, Exercise}\}$, neighbourhood of Exercise is $\{\text{Health, Exercise, Sleep}\}$ and neighbourhood of Sleep is $\{\text{Health, Sleep}\}$.

The members of I_r-open sets are $\{\text{Food}\}, \{\text{Sleep}\}, \{\text{Food, Sleep}\}, \{\text{Exercise, Sleep}\}, \{\text{Food, Exercise, Sleep}\}, \{\text{Health, Exercise, Sleep}\}, \emptyset, U$ and the members of I_r-closed sets are $\{\text{Food}\}, \{\text{Health}\}, \{\text{Food, Health}\}, \{\text{Health, Exercise}\}, \{\text{Food, Health, Exercise}\}, \{\text{Food, Health, Exercise, Sleep}\}, \{\text{Health, Exercise, Sleep}\}, \emptyset, U$.

<table>
<thead>
<tr>
<th>Subset of U (A_r)</th>
<th>$N_r(P), p \in A_r$</th>
<th>$R_r^I(A_r)$</th>
<th>$A_r \subseteq O_r$ and O_r is I_r-open</th>
<th>Member of R_g^I closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Food}</td>
<td>{Food, Health}</td>
<td>Singleton member {Food}</td>
<td>{Food}, {Food, Sleep}, {Food, Exercise, Sleep}</td>
<td>Yes</td>
</tr>
<tr>
<td>{Health}</td>
<td>Two members {Exercise, Health}</td>
<td>Singleton member {Health}</td>
<td>{Exercise, Health, Sleep}</td>
<td>Yes</td>
</tr>
<tr>
<td>{Exercise}</td>
<td>{Exercise, Health, Sleep}</td>
<td>{Health, Exercise}</td>
<td>{Exercise, Sleep} and {Food, Exercise, Sleep} and {Health, Exercise, Sleep}</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subset of U (A_r)</th>
<th>$N_r(P), p \in A_r$</th>
<th>$R_r^I(A_r)$</th>
<th>$A_r \subseteq O_r$ and O_r is I_r-open</th>
<th>Member of R_g^I closed</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Sleep}</td>
<td>{Health, Sleep}</td>
<td>{Exercise, Sleep, Health}</td>
<td>{Sleep}</td>
<td>No</td>
</tr>
<tr>
<td>{Food, Health}</td>
<td>{Food, Health} and {Health, Exercise}</td>
<td>{Food, Health}</td>
<td>U</td>
<td>Yes</td>
</tr>
<tr>
<td>{Food, Exercise}</td>
<td>{Food, Health} and {Health, Exercise, Sleep}</td>
<td>{Food, Health, Exercise}</td>
<td>{Food, Exercise, Sleep} and U</td>
<td>No</td>
</tr>
<tr>
<td>{Food, Sleep}</td>
<td>{Food, Health} and {Health, Sleep}</td>
<td>U</td>
<td>{Food, Sleep} and {Food, Exercise, Sleep}, U</td>
<td>No</td>
</tr>
<tr>
<td>{Exercise}</td>
<td>{Exercise,}</td>
<td>{Exercise,}</td>
<td>U</td>
<td>Yes</td>
</tr>
<tr>
<td>Health</td>
<td>Health, {Exercise, Health, Sleep}</td>
<td>Health</td>
<td>Health, Sleep, U</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------------------------------</td>
<td>--------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>{Health, Sleep}</td>
<td>{Exercise, Health, Sleep}</td>
<td>{Exercise, Health}</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>{Exercise, Sleep}</td>
<td>{Health, Sleep}, {Exercise, Sleep}</td>
<td>Health, Exercise, Sleep</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>{Food, Exercise, Health}</td>
<td>{Exercise, Food, Health}, {Exercise, Sleep}, {Health, Exercise, Sleep}</td>
<td>{Exercise, Food, Health}, {Exercise, Sleep}, {Food, Exercise, Sleep}, {Health, Exercise, Sleep}, U</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>{Food, Exercise, Sleep}</td>
<td>{Exercise, Food, Health}, {Exercise, Sleep}, {Food, Exercise, Health}, {Health, Exercise, Sleep}</td>
<td>U</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>{Health, Sleep, Exercise}</td>
<td>{Exercise, Health, Sleep}, {Health, Exercise, Sleep}, {Exercise, Health, Sleep}, {Health, Exercise, Sleep}</td>
<td>U,</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>{Health, Food, Sleep}</td>
<td>{Exercise, Health, Sleep}, {Health, Exercise, Sleep}, {Health, Food, Health}</td>
<td>U</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Subset of U (Ar)</td>
<td>N_r(P), p∈ Ar</td>
<td>(\overline{R^f_r}(A_r))</td>
<td>(A_r \subseteq O_r) and (O_r) is I_r-closed</td>
<td>Member of (R^f_r) closed</td>
</tr>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
<td>All I_r-open sets</td>
<td>Yes</td>
</tr>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

Theorem 3.3 Every I_r-closed set is R_r-g-closed.

Proof. The indication comes from the reality that \(\overline{R^f_r}(A_r) = A_r \).

Remark 3.4 In the Example 3.2, the member \{Exercise\} in R_r-g-closed set but not in I_r-closed.

Theorem 3.5 Let U be an ideal r-NS and \(A_r \subseteq U \). Then \(x_r \in \overline{R^f_r}(A_r) \) if and only if \(O_r \cap A_r \neq \emptyset \) for every I_r-open set \(O_r \) containing \(x_r \).

Proof. Let \(O_r \) be an I_r-open set such that \(x_r \in O_r \) and \(O_r \cap A_r = \emptyset \). Then \(A_r \subseteq U - O_r \) and \(U - O_r \) is I_r-closed set and hence \(\overline{R^f_r}(A_r) \subseteq U - O_r \). Since \(x_r \notin U - O_r \), which implies \(x_r \notin \overline{R^f_r}(A_r) \). Conversely, let \(x_r \notin \overline{R^f_r}(A_r) \). Then there exists an I_r-closed set \(F_r \) such that \(A_r \subseteq F_r \) and \(x_r \notin F_r \). Hence \((U - F_r) \cap A_r = \emptyset \).

Theorem 3.6 If \(A_r \) and \(B_r \) are R_r-g-closed then
(1) \(A \cup B_i \) is \(R_I \)-g-closed.

(2) \(A \cap B_i \) is \(R_I \)-g-closed.

Proof. The reality, \(R_I^f(A \cup B_i) = R_I^f(A_i) \cup R_I^f(B_i) \) and \(R_I^f(A \cap B_i) \subseteq R_I^f(A_i) \cap R_I^f(B_i) \) gives the proof.

Remark 3.7 The collection of \(R_I \)-g-closed sets form a topology.

Theorem 3.8 If \(A_i \) is \(R_I \)-g-closed and \(A_i \subseteq B_i \subseteq R_I(A_i) \) then \(B_i \) is \(R_I \)-g-closed.

Proof. Let \(B_i \subseteq O_i \) and \(O_i \) be \(I_r \)-open. Then \(A_i \subseteq U \) and \(A_i \) is \(R_I \)-g-closed. Therefore \(R_I^f(A_i) \subseteq U \) which implies \(R_I^f(B_i) \subseteq U \). Hence \(B_i \) is \(R_I \)-g-closed.

Theorem 3.9 Let \(U \) be an ideal r-NS and \(A_i \subseteq U \). Then \(A_i \) is \(R_I \)-g-open if and only if \(F_i \subseteq R_I^f(A_i) \) whenever \(F_i \subseteq A_i \) and \(F_i \) is \(I_r \)-closed.

Proof. Let \(A_i \) be \(R_I \)-g-open and \(F_i \subseteq A_i \) and \(F_i \) be \(I_r \)-closed. Then \(U \setminus A_i \subseteq U \setminus F_i \) and \(U \setminus F_i \) is \(I_r \)-open. Since \(U \setminus A_i \) is \(R_I \)-g-closed, \(R_I^f(U \setminus A_i) \subseteq U \setminus F_i \) and \(U \setminus R_I^f(A_i) = R_I^f(U \setminus A_i) \subseteq U \setminus F_i \). Hence \(F_i \subseteq R_I^f(A_i) \).

Conversely, let \(U \setminus A_i \subseteq O_i \) where \(O_i \) is \(I_r \)-open. Then \(U \setminus O_i \subseteq A_i \) and \(U \setminus O_i \) is \(I_r \)-closed. By hypothesis, we have \(U \setminus O_i \subseteq R_I^f(A_i) \) and hence \(R_I^f(U \setminus A_i) = U \setminus R_I^f(A_i) \subseteq O_i \). Hence \(A_i \) is \(R_I \)-g-open.

Theorem 3.10 Let \(U \) be an ideal r-NS and \(A_i \subseteq U \).

(1) \(A_i \) is \(R_I \)-g-closed,

(2) \(R_I^f(A_i) \subseteq O_i \) such that \(A_i \subseteq O_i \) and \(O_i \) is \(I_r \)-open,

(3) \(R_I^f(A_i) \cap F_i = \emptyset \) whenever \(A_i \cap F_i = \emptyset \) and \(F_i \) is \(I_r \)-closed.

The statements (1), (2) and (3) are equivalent.

Proof. (1) \(\iff \) (2) Directly we get by the definition 3.1.

(2) \(\implies \) (3) Let \(A_i \cap F_i = \emptyset \) and \(F_i \) be \(I_r \)-closed. Then \(A_i \subseteq U \setminus F_i \) and \(U \setminus F_i \) is \(I_r \)-open. By (2), \(R_I^f(A_i) \subseteq U \setminus F_i \). Hence \(R_I^f(A_i) \cap F_i = \emptyset \).

(3) \(\implies \) (1) Let \(A_i \subseteq O_i \) where \(O_i \) is \(I_r \)-open. Then \(A_i \cap U \setminus O_i = \emptyset \) and \(U \setminus O_i \) is \(I_r \)-closed. By (3), \(R_I^f(A_i) \cap U \setminus O_i = \emptyset \) which implies that \(R_I^f(A_i) \subseteq O_i \). Hence \(A_i \) is \(R_I \)-g-closed.

4. Application

In the example 3.2, the members of \(I_r \)-open sets are \{Food\}, \{Sleep\}, \{Food, Sleep\}, \{Exercise, Sleep\}, \{Food, Exercise, Sleep\}, \{Health, Exercise, Sleep\}, \emptyset, \U
t and the members of \(I_r \)-closed sets are \{Food\}, \{Health\}, \{Food, Health\}, \{Health, Exercise\}, \{Food, Health, Exercise\}, \{Health, Exercise, Sleep\}, \emptyset, \U.
The members of $R_I g$-open sets are $\{\text{Food}\}$, $\{\text{Exercise}\}$, $\{\text{Sleep}\}$, $\{\text{Food, Exercise}\}$, $\{\text{Food, Sleep}\}$, $\{\text{Exercise, Sleep}\}$, $\{\text{Food, Exercise, Sleep}\}$, \emptyset, U and the members of I_r-closed sets are $\{\text{Food}\}$, $\{\text{Health}\}$, $\{\text{Food, Health}\}$, $\{\text{Health, Exercise}\}$, $\{\text{Food, Health, Exercise}\}$, $\{\text{Health, Exercise, Sleep}\}$, \emptyset, U.

Therefore the members in difference of I_r-open sets and $R_I g$-open sets are $\{\text{Exercise}\}$ and $\{\text{Food, Exercise}\}$ and hence the common activity is Exercise and hence Exercise is base for all human activities.

5. Conclusion

Further study about r-neighbourhood space, may give many solutions for the real life problems.

References