Rin-in comb wheels of the wheel pair of the car when moving on a curve section of the path

Shukhrat Djabbarov¹, Jamshid Abdirakhmanov¹, Bakhrom Abdullaev¹, Sokhib Namozov¹, Rustam Yuldoshov¹, and Vasila Ergasheva¹

¹Tashkent State Transport University, 1 Temiryulchilar Str., Tashkent 100069, Uzbekistan

Abstract. In the article, using the classical provisions of theoretical mechanics, various methods of constructing a computational model of rolling in the wheel crest of a wheelset of a wagon from when moving rolling stock along a curved section of track are presented.

1 Problem statement and its connection with scientific and practical tasks

In [1], the so-called "calculation" scheme is introduced to determine the stability of the locomotive wheel on the rail. However, due to a number of inaccuracies made during the construction of such models, for example, such as the replacement of forces from the body to the axle necks of the wheelset by concentrated mechanisms and at the same time leaving them on the model, the presence of rail threads in the model, although they are replaced by bond reactions, etc., cannot be attributed to any physical, and, moreover, neither to the design model of the wheelset of the car. In [2–4], one and/or two contact problems are mainly modeled, which arise when a locomotive wheelset comes into contact with rail threads without bringing a specific design model with all the forces acting on the wheel. At the same time, in [2], when solving problems of one- and two-contact problems, the equilibrium equations of the reaction of two bonds in the form of a rail and a footrest acting on the wheel are essentially composed. The equations of equilibrium of forces acting on the wheel of the wheelset from the side of the rail (connection) are not given, which would allow to obtain the conditions for rolling the wheel onto the thrust rail. In addition, the list of forces acting on the wheel and the causes of their occurrence are not considered in [1–4].

Proceeding from this, it can be noted that the researchers have overlooked the features of constructing calculation models of the wheelset of the car from rolling in. One of the features is that the load on the wheelset of the car depends entirely on the technology of placement (symmetrically and/or asymmetrically relative to the longitudinal and transverse axes of symmetry of the car) and cargo attachment [5–7].

It should be particularly noted that only those computational models that are built on the basis of the classical provisions of theoretical mechanics accompany the correct compilation of a mathematical model of the physical object under consideration [8, 9]. In this regard, the construction of a calculated model of a wagon wheelset from rolling in...
when rolling stock moves along a curved section of track is an urgent task of railway transport and transport science.

The purpose of this article is to construct a computational model of a wagon wheelset from rolling in when rolling stock moves along a curved section of track.

2 Solution methods

Let's use the classical concepts and provisions of theoretical mechanics: connections, coupling reactions, the principle of release from bonds, the moment of a pair of forces, bringing a system of forces to a given point, the axiom that, without disturbing the state (motion or rest) of a solid body, balancing forces can be added and discarded.

3 Task conditions

Let us consider the condition of equilibrium of forces acting on the axis of the wheelset at the moment when the outer wheel rests on the rail A at point O with a rectilinear part of the ridge and tends to rise up under the action of the frame force F_p, i.e., the ridge of the outer wheel of the wagon rolls onto the head of the thrust rail. Otherwise, let's consider the cases of the beginning of rolling the crest of the outer wheel of the car onto the head of the thrust rail. In this case, the rolling surface of the inner wheel will move relative to the inner rail towards the outer rail thread.

4 Accepted assumptions

The conicity (usually 1:20) of the main rolling surface of the wheels is neglected. It should be borne in mind that the normal inertia force I_n on the physical model of a wheelset is given only to take into account the movement of rolling stock along a curved section of the track, although there is simply no such force in absolute motion [8, 9]. In addition, since the normal inertia force I_n is, as it were, a component of the frame force F_p, it is not taken into account in analytical expressions describing the conditions of equilibrium of forces.

It should be particularly noted that the frame forces F_p (which are equivalent to the transverse forces F_t) include the forces that arise when the rolling stock moves along the waves of the unevenness of the path (i.e., the so-called transverse inertia force of the portable movement I_w), regardless of whether the rolling stock moves along a straight or curved section of the path; components aerodynamic drag forces across the car F_w, transverse components of the body weight force with a load G, [8, 9], traction forces F_t or longitudinal compressive forces arising in the braking mode of rolling stock F_t [1]. The projection I_n of the normal component of the inertia force in absolute motion I_s is also included in the number of transverse forces F_t.

We emphasize that the normal component I_n of the inertia force in absolute motion does not arise and does not appear, but only takes into account the acceleration of the absolute motion of the body along the curve, i.e. no force I_n is actually applied to the body [8, 9]. For example, when a train is moving along a curved section of the track to a car with a rigidly fixed load (crew), in fact, no force I_n is applied. The statement that the normal
inertia force I_n presses the carriage against the outer rail thread, making it difficult to turn and thereby increasing the guiding force and, as a consequence, lateral wear of the outer rail, has no physical justification \cite{1, 10}. There is also no physical justification for the statement that when moving along a curve, a force effect occurs in the form of centrifugal force \cite{11, 12}.

In accordance with this, we emphasize that the normal inertia force I_n on the physical and mathematical model of a car with a load and, in particular, a wheelset is given only to take into account the movement of rolling stock along a curved section of the track, although there is simply no such force in absolute motion \cite{8, 9}. Modulo I_n is much less than I_o.

Note that the transverse forces F_y act on the side frames of the trolleys, and through them on the axle boxes or on the axles of the wheelset of the wagon.

Based on this, we will call force F_y the "frame" force F_{fr}, i.e. $F_{fr} = F_y$. The frame force F_{fr} is attributed to the number of main forces pressing the wheelset of the bogies to the outer rail threads. It is taken into account that the number of loads from the body on the axle necks of the wheelset F_1 and F_2 (as vertical forces F_z) includes the forces that arise when the rolling stock moves along the waves of unevenness of the path (i.e., the so-called vertical inertia forces of portable motion I_v), vertical components of the gravity forces of the body with a load G_z, aerodynamic drag forces F_{zv} and the normal inertia force I_n in absolute motion \cite{8, 9}.

Decision. We show the solution of the problem using the following classical provisions of theoretical mechanics:

– the principle of freedom from bonds;
– the principle of freedom from ties and the provision on bringing the system of forces F_1 and F_2 to this point;
– the principle of being freed from bonds using the consequence of the axiom that, without violating the state of a solid body, a force (for example, a frame force F_{fr}) can be transferred along the line of its action to any point of the body.
– the principle of freedom from bonds and the provision on bringing the system of forces to a given point (for example, frame force F_{fr}).

1) To build a design model of a wheelset of a car, we will use the principle of freedom from ties. At the same time, we will keep in mind that for a wheeled pair of bogies of rolling stock, the rail threads A and B are the main links that keep it from moving in the transverse direction, i.e. along the sub-rail base (sleepers). Otherwise, the main purpose of the rail threads A and B, as external links, is the direction of the wheels of the rolling stock when moving on straight and curved sections of the track.

In this regard, the wheelset is first freed from the rail threads A and B, replacing their influence with bond reactions R_1 and R_2. Then, tangents $\tau - \tau$ and normals $n - n$ are drawn through the points of contact of the wheels with the rail threads A and B, as shown in Fig. 2.37. The coordinate axes $O1yz$ are shown (see Fig. 1).
Figure 1 shows: a1 – the distance from the center of the neck of the axle of the wheelset to the crest of the wheel of the thrust thread (for a four-axle freight car, 0.264 m is assumed) and a2 - the distance from the center of the neck of the axle of the wheelset to the point of contact of the wheel with the inner rail thread (0.168 m is assumed).

Further, it should be borne in mind that the tangent τ to the working face of the rail head at the point O of contact of the outer wheel ridge with the thrust thread rail A forms an angle α with the horizontal (axis O1y) (usually taken for freight cars equal to 60 °, and for locomotives – 70 °). Then, given that the movement of the wheelset relative to the rail threads is hindered by the friction forces between their contacting surfaces, the reactions of the bonds R_1 and R_2 are directed opposite to the movement of the wheels with some deviations from the normal n – n. This is done because, although the application points R_i and R_j, as vector quantities, are known, but their directions and magnitude are unknown.

In accordance with this, the reactions of bonds R_i and R_j are decomposed into normal N_i, N_j and tangent F_{t1}, F_{t2} components as shown in Fig. 2.

It is taken into account that the tangential components F_{t1}, F_{t2} represent the friction forces between the contacting surfaces of the wheels and the rail threads, i.e. $F_{t1} = F_{tr1}$, $F_{t2} = F_{tr2}$. Friction forces, as resistance forces, are always directed in the direction opposite to the rolling of the wheel crest along the working face of the head of the thrust rail, as shown in Fig. 2.

Thus, a calculated model of the wheelset of the car is obtained (see Fig. 1) to determine the stability of the wheel on the rail.

2) We show the determination of the stability of the wheel on the rail by constructing a calculated model of the wheelset of the car using the provision on bringing the system of
forces to this point. To do this, at the corresponding points O2 and B2 of the wheelset axis, taken as the centers of reduction (see Fig. 1), we apply pairs of forces F_1, F_1' and F_2, F_2', equal in modulus, but opposite in direction, which are equal in modulus to forces \bar{F}_1 and \bar{F}_2 (Fig. 3). Otherwise, $F_1' = -\bar{F}_1 = \overline{F}_1$ and $F_2' = -\bar{F}_2 = \overline{F}_2$.

Fig. 3. Bringing the system of forces to this point

Therefore, according to the provision on bringing the system of forces to this point, pairs of forces F_1, F_1' and F_2, F_2' are replaced by concentrated bending moments M_1 and M_2 applied at the corresponding points O2 and B2 of the wheel axis, leaving concentrated forces $F_1 = \bar{F}_1$ and $F_2 = \bar{F}_2$ in the equivalent design model (Fig. 4).

Fig. 4. Equivalent design model of a wheelset

Further, as in Fig. 2, the reactions of bonds R_1 and R_2 are decomposed into normal N_1, N_2 and tangent $F_{1\alpha}, F_{1\beta}$ components (Fig. 5).

Fig. 5. Equivalent design model of a wheelset
Note that in Fig. 5 are indicated: h1 and hτ1 - the shoulder of the forces N1 and Fτ1, respectively; rк – the radius of the wheel, equal to 0.475 m for a freight car.

Thus, an equivalent calculation model of the wheelset of the car is obtained to determine the stability of the wheel on the rail (see Fig. 2).

3) We show the definitions of the stability of a wheel on a rail by constructing a kind of equivalent calculation model of a wagon wheelset using the consequence of the axiom that, without violating the state of a solid body, force can be transferred along its line of action to any point of the body. So, for example, the force \(\overrightarrow{F}_p \) is transferred along the line of its action to the intersection with the continuation of the O – O2 line as shown in Fig. 6.

![Fig. 6. A kind of equivalent design model of a wheelset](image)

Further, the reactions of bonds \(\overrightarrow{R}_1 \) and \(\overrightarrow{R}_2 \), as before, are decomposed into normal \(\overrightarrow{N}_1 \), \(\overrightarrow{N}_2 \) and tangent \(\overrightarrow{F}_1 \), \(\overrightarrow{F}_2 \) components (Fig. 7).

![Fig. 7. A kind of equivalent design model of a wheelset](image)

Thus, a kind of equivalent calculation model of a wagon wheelset is obtained to determine the stability of a wheel on a rail (see Fig. 5).

4) We will show the definitions of the stability of a wheel on a rail by constructing another kind of calculation model of a wagon wheelset using the provision on bringing the system of forces to this point. To do this, at the corresponding points O and B of the wheelset axis, taken as the centers of reduction, (see Fig. 6) apply pairs of forces \(\overrightarrow{F}_p' \) and \(\overrightarrow{F}_p'' \), equal in modulus, but opposite in direction, which are equal in modulus to force \(\overrightarrow{F}_p \) (Fig. 8). Otherwise, \(\overrightarrow{F}_p' = -\overrightarrow{F}_p'' = \overrightarrow{F}_p \).
Therefore, according to the provision on bringing the system of forces to this point, the pairs of forces F'_p and F''_p are replaced by a concentrated bending moment M_p applied at the point O of the wheel axis, leaving concentrated forces $F_p = F'_p$ in the equivalent design model. Further, the reactions of bonds R_1 and R_2, as before (see Fig. 7), decomposed into normal N_1, N_2 and tangent T_1, T_2 components (Fig. 9).

Thus, another kind of equivalent calculation model of a wagon wheel pair is obtained to determine the stability of the wheel on the rail (see Fig. 7).

5 Conclusions and prospects for the development of the applied problem

The constructed calculation models of the wheelset of the car from rolling in when the rolling stock moves along a curved section of the track allow us to mathematically correctly describe the process of rolling the wheelset onto the outer rail thread. At the same time, it should be borne in mind that in order to determine the unknown reactions of connections (rail threads), it is required either to make up the equilibrium equations of a plane system of forces in projections on the selected coordinate axes, or to make up the equations of moments of forces relative to two arbitrary points. We emphasize that the results of calculations for determining unknown reactions of external connections obtained by these methods may not be due to different values of the arms of forces that are not taken into account when composing the equation of equilibrium of forces in projections on the accepted coordinate axes. In this case, the calculated values of the normal coupling reaction
of N_1 and N_2 should be taken as the results of such methods, where the condition $N_1 > N_2$ is met.

This approach can be applied in the future to build a computational and mathematical model of the stability of the track against a transverse shift under the train.

References