Ore-containing data of lyalyagun mineralized zone of malguzar mountains

Abror Abdullaev, Kholmurod Khaliyorov, Sunnat Shanazarov, Paraxat Ziyayeva, Ilkhom Ruziyev, Mahmud Muminov

Abstract. An analysis of the Malguzar Mountains allows us to note that Silurian formations (sandstones, grave stones, shale) are ore-bearing here, crumpled into folds, which are complicated by a series of faults with a northwest strike. These structures are rectilinear; their zone is characterized by the presence of small discontinuous structures and areas of swelling. Within the Lyalyagun zone, the localization sites of mineralized zones of gold mineralization were identified based on established direct and indirect cosmogeological features.

1 Introduction

The history of developing aerospace-geological research methods began in 1723 when the Montgolfet brothers (Leon, France) launched the first balloon. Intensive development of remote sensing methods began in the second half of the 19th century, especially in compiling topographic maps for military purposes. The current stage in the development of aerospace research methods is associated with the emergence of a new generation of digital tools for obtaining geological information. This led to the development of computer programs for processing remote sensing materials and technologies for the integrated analysis of geological, geophysical, structural-tectonic, mineralogical-geochemical, and other data—this is a geographic information system (GIS) [Abdullayev et al. 2020] [2].

In the 90s of the last century, space multispectral radar methods for obtaining remote data in digital form were developed and began to operate in Russia (MSU-M, MSU-SK, Almaz), in the USA (Landsat MSS), in France (Spot XS, P), in Japan (JERS-1? ADEAS), in Canada (RADARSAT), etc. As emphasized by N.I.Korchuganova, A.K. aerospace research methods in geology are: to increase the reliability of the results obtained; creation of remote bases of state geological maps; creation of new types of geological and other maps; in solving problems of ore content and geoecology, etc. [Abdullayev et al. 2021] [3], [Ruziev I et al. 2020-100] [27].

Space photographic materials (scale 1:50000, 1:75000) were subjected to visual

Corresponding author: abrorabdullaev_87@mail.ru
interpretation, as this method allows for obtaining more reliable geological information about the structural and tectonic structure of the earth's crust.

The initial data were various multispectral satellite images (Landsat 5_7, QuickBird), spectral libraries available in the ERDAS IMAGINE software (Aster, JPL, USGS), and geoscience data. [Abdullayev et al. 2021] [4], [Ruziev I et al. 2020-100] [21].

Digital processing of space images was carried out using the ACP, ITS, Kirsch, and Index methods IV. As a result, several variants of processed space images were prepared (Fig. 1). [Rundkvist et al. 1990] [1], [Ruziev I et al. 2020-100] [21].

OM ACP method mapped the main formations of rocks that differed in mineralogical composition and identified the main geological and material complexes. [Akbarov 2004] [8]. The contours of linear lineaments and concentric and arcuate structures of territories (piedmont plains) are distinguished by the Kirsch method. The Index IV method recorded structural linearities in bedrock and areas covered by loose formations. [Gaipov et al. 2018] [5].

The Lyailyaguinskaya mineralized zone of the Malguzar Mountains is structurally a band of contiguous faults of sublatitudinal and western-northwestern strike, isoclinal folding with the manifestation of intense silicon-carbon metasomatism in the rocks. [Nurkhodzhaev et al. 2019] [7].

The ore-controlling value here is played by feathering and cleavage cracks, interstratal delaminations, genetically associated with folding and renewed, blocked by secant faults. In the western part of the Lyailyaguinskaya mineralized zone, there is a silver-gold deposit Bakhmal; in the eastern part, there is a group of small manifestations of gold mineralization. [Pyatkov et al. 1981] [14], [Ruziev I et al. 2020-100] [27].

The main ore-controlling structure in the area of work is the Karaulkhona-Charmitan.
fault zone of the Tien Shan system, which complicates the southern contact of the Koshrabad intrusion. At the crossing points of the Zirabulak-Koshrabad consedimentary fault and its system with the Karaulkhona-Charmitan long-lived fault zone, the main gold ore objects of the Charmitan ore field are concentrated—the Charmitan, Guzhumsay, and Urtalik deposits, the ore bodies of which are controlled by a series of conjugated deep cleavage cracks, feathering the Karaulkhona-Charmitan fault zone from the north. At the Charmitan deposit, the ore-localizing structures are northwest-trending; at the Guzhumsai deposit, northeast-trending; and at Urtalik, mineralization is confined to the northwestern, northeastern, and sublatitudinal structures.

2 Methods and Materials

To determine the reasons for the formation of splitting blow-ups and other ore-bearing elements in the zones of large ore-controlling faults, the materials of remote sensing of the earth were involved in the study, the interpretation of which may reveal the reasons for the change in the morphogenetic features of the northwestern ore-controlling faults, which are associated with the formation and spatial distribution of gold ore mineralization.\[Razykov. 2017\][26],[Ruziev I et al. 2020-100][27]. In addition to the isolation and study of cosmostructures, work was carried out on the revealed halos of sulfide minerals, with which gold is associated. These studies were carried out in two promising areas, Ardakshan and Kuduk.\[Janibekov et al. 2019\][12]. The materials of their remote sensing made it possible to reveal the ring and linear cosmostructures. Ring structures are rare and small in size (2.5-4.5 km)\[Razykov. 2017\][26]. In destroying their original ring shape, the northwestern ore-controlling to the northeast transverse linear structures played the main role. The most widely developed are linear cosmostructures, northwestern, transverse to them, north-eastern directions.\[Gorzhevsk et al. 1978\][18]. The relationship of the northwestern faults with transverse northeastern structures determined the formation of intersection areas with the formation of splitting, blowing, and pinching in the zones of ore-controlling faults, which subsequently became a favorable structural position for the manifestation of gold ore mineralization in the ore stage.\[Razykov. 2019\][25],[Ruziev I et al. 2020-100][27].

Based on cosmogeological studies, a cosmostructural model for the Lyailyagunskaya area was built. The initial data were various multispectral satellite images (Landsat 5_7, QuickBird), spectral libraries available in the ERDAS IMAGINE 9.2 (Aster, JPL, USGS), and geoscience data (Figure 2, Figure 3, Figure 4, Figure 5).\[Likhachev et al. 1963\][13],[Ruziev I et al. 2020-100][27].

Fig. 2. Processed satellite image Landsat 7 on territory of Ardakshan prospective area (Materials of SE "IMR"). Scale 1:25000.
Digital processing of space images was carried out using the ACP, ITS, Kirsch, and Index methods. As a result, several variants of processed satellite images were prepared (scale 1:25000).

The OMI ACP method mapped the main formations of rocks that differed in mineralogical composition and identified the main geological and material complexes. [Rumyantseva et al. 1983][22], [Ruziev et al. 2020-100][2217].

The contours of linear lineaments and concentric and arcuate structures of territories (piedmont plains) are distinguished by the Kirsch method. The Index IV method fixed structural linearities in bedrock and areas covered by loose formations. [Abdullaev et al. 1971][19].

![Fig. 3. Processed satellite image Landsat 7 on territory of Kudukcha prospective area (Materials of the GM "IMR") Scale 1:25000](image1)

![Fig. 4. Processed satellite image Landsat 7 on territory of Ardakshan prospective area (Materials of the GM "IMR") Scale 1:25000](image2)
3 Results

During the deciphering, several small ring structures and several systems of linear structures were identified (Fig. 5, Fig. 6). In total, six small ring structures with a diameter of 2.5 km to 4.5 km were identified. \cite{Vasilkovsky1956} \cite{Kimetal1978}. Only one of the largest ring structures northeast of the Malguzar Mountains has retained its rounded shape. The remaining ring structures are represented by their fragments. \cite{Abdullayevetal2022}, \cite{Ruzievetal2020-100}. In changing the initial morphology of the ring structures, the revealed linear structures (faults) of the northeast strike played an important role. The ring structures' inner part is composed of Paleozoic and Cenozoic formations. \cite{Abdullayevetal2022}, \cite{Ruzievetal2020-27}. 

Fig. 5: Processed satellite image of Landsat 7 on territory of Kudukcha prospective area (Materials of the GM "IMR")

Fig. 6: Cosmostructural model of the Malguzar Mountains
The analysis shows that most of the zones, sites, and points of manifestation of gold mineralization are located in the central southern parts of the Malguzar Mountains, confirming the scientific results obtained by deciphering remote sensing materials of the territory of the Malguzar Mountains. [Mirkamalov et al. 2019][16].

Position of the Lyalyagun mineralized zone in space structures. The Malguzar mountains are determined by their confinement to a strip between two large linear structures of sublatitudinal strike, complicated by a series of northwestern and northeastern faults. [Khokhlov. 1983][22], [Ruziev I et al. 2020][27].

Deciphering satellite images of the Lyalyagun area on a larger scale (1:25000) allowed us to build its detailed cosmostructural model (Fig. 7).

Fig. 8. Scheme of the cosmostructural model of the South-Eastern part of the Malguzar mountains. Lyalyagun area. There are no ring structures in this area. The most widely developed linear cosmostructures are northwest-trending. These are rectilinear faults of various lengths, interrupted in places by branched ones. [Kim et al. 1978][17]. Their discontinuity and branching, in many cases, are associated with the influence of northeastern structures.
4 Conclusion

...f the Lyailgunskaya area based on cosmogeological studies made it possible to establish the spatial distribution of sulfide mineralization in the presence of linear structures (faults) of the northeast strike. Sulfide mineralization is located strictly along the line of the northeast direction, and, in all likelihood, their formation and placement to the location are controlled by a system of linear structures in the northeast direction.

References


25. Razykov OT Metallogeny of rare-metal gold and rare-metal mineralization of the Zeravshan-Alan belt 2019 (Uzbekistan) abstract 54 P.


E3S Web of Conferences 401, 02001 (2023) https://doi.org/10.1051/e3sconf/202340102001

CONMECHYDRO - 2023