Monitoring dynamics of green spaces in
Surkhandarya region based on remote sensing
data of climate change

Azamat Jumanov1*, Marguba Khudaybergenova1, Gulbahor Mirazimova2, Yorkinbek Radjabov2, Nurali Umarov3, and G. Samatova4

1“Tashkent Institute of Irrigation and Agricultural Mechanization Engineers”, National Research University, Tashkent, Uzbekistan
2Jizzakh Polytechnical Institute, Jizzakh, Uzbekistan
3Samarkand State Architecture and Construction University, Samarkand, Uzbekistan
4Tashkent State Pedagogical University, Tashkent, Uzbekistan

Abstract. Smallholder farmers in Uzbekistan have been facing severe climate-related hazards, particularly highly variable drought. Climate change-induced rise in temperature is the main impetus for more reforms and adoption of modern technologies in the agricultural sector. This article analyzes the data of 2 weather stations, including Kamashi and Shakhrisabz, in 2017, 2018, and 2019 to study the effects of climate change in the Surkhandarya region and its border areas. These weather stations provide temperature, precipitation, relative humidity, and humidity deficit information. In addition, Landsat 8 OLI images for the study area were used for land cover change analysis in 2010, 2015, and 2020. In addition, NDVI analysis for the studied area was also carried out. From these data, it can be concluded that intensive horticulture plantations implemented in the region effectively reduce climate change's impact on the agro-economic sector.

1 Introduction

Different scenes of climate change, including changed rainfall, increased temperature, and higher atmospheric carbon dioxide concentration, affect plant production and crop yields. Cooperatively, these effects have been increasing or decreasing crop production. The rate of evapotranspiration and water stress of crops are also increasing consequences of the increasing temperature [1], [2]. Soil salinity is being studied worldwide using various techniques with satellite observations, and remote sensing is the most significant of them for being cost-effective, time-saving, and providing global coverage [3]. Diverse types of satellite data are being used in various kinds of soil salinity studies with similar approaches. RS and GIS-related approaches have been adopted by numerous published works in attempts to study, map, and model soil salinity in an effectively efficient way [4], [5].

* Corresponding author: jumanov.azamat81@gmail.com
In the Republic of Uzbekistan, viticulture has been spreading since ancient times. And today, gardening issues are the focus of the government. Today, the demand for raisins is not only responsible for the domestic market but also for demand in the foreign market.

Table 1. Dynamics of yield of existing intensive orchards and gross harvest in Republic of Uzbekistan from 2016 - 2020. [6]

<table>
<thead>
<tr>
<th>Name of regions</th>
<th>Gross yield of intensive orchards, thousand ton</th>
<th>Average yield of intensive orchards, c / ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karakalpakstan</td>
<td>2.1 2016 121 2018 121 2020 121</td>
<td>2016 121 2018 2.2 2020 2.4</td>
</tr>
<tr>
<td>Andijon</td>
<td>39.4 2016 161 2018 161 2020 161</td>
<td>2016 161 2018 41.1 2020 44.4</td>
</tr>
<tr>
<td>Bukhara</td>
<td>22.4 2016 149 2018 149 2020 149</td>
<td>2016 149 2018 23.4 2020 25.2</td>
</tr>
<tr>
<td>Jizzak</td>
<td>42.5 2016 172 2018 172 2020 172</td>
<td>2016 172 2018 44.3 2020 47.7</td>
</tr>
<tr>
<td>Kashkadaryya</td>
<td>15.1 2016 133 2018 133 2020 133</td>
<td>2016 133 2018 15.8 2020 17.0</td>
</tr>
<tr>
<td>Samarkand</td>
<td>158.0 2016 191 2018 191 2020 191</td>
<td>2016 191 2018 165.4 2020 178.0</td>
</tr>
<tr>
<td>Surkhandarya</td>
<td>18.4 2016 159 2018 159 2020 159</td>
<td>2016 159 2018 19.16 2020 20.7</td>
</tr>
<tr>
<td>Tashkent</td>
<td>140.6 2016 165 2018 165 2020 165</td>
<td>2016 165 2018 146.7 2020 158.0</td>
</tr>
<tr>
<td>Fergana</td>
<td>5.6 2016 166 2018 166 2020 166</td>
<td>2016 166 2018 5.86 2020 6.32</td>
</tr>
<tr>
<td>In the Republic of Uzbekistan</td>
<td>489.2 2016 168 2018 168 2020 168</td>
<td>2016 168 2018 510.3 2020 549.5</td>
</tr>
</tbody>
</table>

Increasing gardening to a high level, creating and locating fruit trees and grape varieties suitable for soil climatic conditions, using new and modern agro technologies to increase their productivity, thereby expanding the range of fruit and vegetable products and increasing the demand for fruits and grape products. In particular, one of the urgent tasks today is to ensure the effective use of existing irrigated lands, preserve, restore, and improve soil fertility and ensure their targeted use. The decree of the First President of the Republic of Uzbekistan on April 13, 2013 No. PD-1958 “On measures to further improve the meliorative status of irrigated lands and rational reasonable of water resources for 2013 – 2017” and the implementation of this resolution on February 24, 2020, Cabinet of Ministers No. 39 concerning “On the territory Republic” of the State Committee for Land Resources, Geodesy of Irrigated Agricultural Land, a study is being conducted on soil maps [7]. Traditional soil salinity assessments have been done by collecting soil samples and laboratory analysis of collected samples for determining TDS and electrical conductivity [5]. However, traditional methods of soil salinity assessment are slow and expensive because sampling requires long time activities [8]. The time consummation of traditional methods has been stated by [9], [10]. Still, GIS and Remote Sensing technologies provide more efficient, economic, and rapid tools and techniques for soil salinity assessment and soil salinity mapping. As well as in Uzbekistan, the research institutes and projects are responsible for soil salinity assessment using GIS tools at a high level. Currently, two main organizations are working on soil salinity assessment, including the Meliorative expedition of Surkhandarya province and the Cadastre Agency under the State Tax Committee are doing soil salinity assessment in the study area. Republican irrigated lands, geological
and hydrogeological objects, orchards and vineyards in the hills and foothills, their biological needs, soil types, as well as resource-saving irrigation technologies, new, modern, and innovative irrigation, irrigation methods (methods of unconventional irrigation of orchards and vineyards). For the irrigation season, water is the basis for ensuring water supply for water supply, crop yields, creating scientific foundations, and using renewable technologies.

2 Study area

Uzbekistan is a country in Central Asia. It is one of the 12 landlocked countries in Asia. It is bordered by Turkmenistan, Afghanistan, Tajikistan, Kazakhstan, and Kyrgyzstan, all of which are, themselves, landlocked countries. The total territory of the republic is 44892400 km², of which just less than 4331700 km² is used for agricultural purposes. Large valleys and deserts, foothills, and mountain regions characterize the landscape of Uzbekistan. Due to the geographical location of Uzbekistan, dry and continental weather can be observed at any time of the year, and it is considered a (semi-)arid zone [11]. Uzbekistan has a unique climate consisting of long, dry, and very hot summers, cool and wet autumns, and very cold winters with thaws [12].

2.1 Climate

Since the massif is located in the south of Uzbekistan, the climate is typical for the southern regions of the republic, i.e., sharply continental. The average temperature during the peak summertime (July) is 28°C, while the mean temperature is 1°C in the peak wintertime (January). The mean annual sum of the precipitation is 424 mm [12], [13]. Temperature fluctuations within 16,3-29, 5 °C for the nearest Kamashi station are shown in Table 2.1.2. The evaporation of water is about 1794 mm. The air temperature fluctuates between 18,9-19,6 °C; precipitation is within 250-350 mm; the average annual relative humidity of the air is 45-53%; the wind is weak, not higher than 5 m/s, but winds up to 15 m/s are still repeated 1-2 times a month. In a multi-year plan, summer wind invasions occur in July-August. These days, the air temperature rises to 350-450 °C, drying up the leaves, which causes a massive dropping in ovaries and cotton flowers. The duration of hot days in the region is 215-245 days a year, and on some days, the temperature reaches 46 °C - 57 °C. (fig 1,2,3,4) [14]

![Graphs showing temperature and precipitation](image_url)
To achieve additional increases in monitoring land cover changes, the grower deliberately applies approximately the substance in certain areas to test the correct application of remote sensing. This technology became possible to the development of Geo-informatics, data progress in the land cover of automation of machine learning, the development of remote sensing data and measuring complexes for collecting information on the land use land cover changes, understanding how land use land cover changing analysis and assessing the effects of future land use change and monitoring [15].

3 Materials and methods

First, a remotely sensed Landsat 8 OLI image was projected to the WGS 1984 UTM Zone 42N coordinate system and clipped to the extent of the study area. After that, we used an
NDSI mask to extract the saline areas. Normalized Difference Soil Index (NDSI) using equation formula can be used only for Landsat OLI 8 satellite sensor raster layers were calculated using the following formula (Equation 1):

\[
\text{NDSI} = \frac{(\text{Green} - \text{SWIR})}{(\text{Green} + \text{SWIR})}
\]

(1)

The range of NDSI values was divided into 5 classes (Table 2), linked to the soil salinity classification (no salinization, weak, moderate, severe, and very severe salinization) [16], [17]. The soil type analysis was used for the Soil Adjusted Vegetation Index (SAVI) from a multiband raster Landsat 8 OLI object and returned a raster object with the index values. The Soil-Adjusted Vegetation Index (SAVI) is a vegetation index that attempts to minimize soil brightness influences using a soil-brightness correction factor. This is often used in arid and semi-arid regions where vegetative cover is low soil salinity soils high [18]:

\[
\text{SAVI} = \frac{(\text{NIR} - \text{Red})}{(\text{NIR} + \text{Red} + L)} * (1 + L)
\]

(2)

There: L- 0.5 (The amount of green vegetation cover).

<table>
<thead>
<tr>
<th>NDSI range</th>
<th>Soil salinity level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.17-0.28</td>
<td>Very high salinization</td>
</tr>
<tr>
<td>0.30-0.40</td>
<td>High salinization</td>
</tr>
<tr>
<td>0.41-0.55</td>
<td>Medium salinization</td>
</tr>
<tr>
<td>0.56-0.70</td>
<td>Low salinization</td>
</tr>
<tr>
<td>0.71-1.00</td>
<td>Very low salinization</td>
</tr>
</tbody>
</table>

Table 2. NDSI range on soil salinity classes.

Fig. 3. Amount of precipitation in 2017
4 Results and discussion

Results of the study land use/land cover index for transforming remote sensing data was proposed and evaluated for mapping forest areas and bare land/open areas. The index studied changing forest and bare land/open areas with a Maximum likelihood classification. The classification indices could perfectly differentiate between forest and bare land/open land because both of these land types show significant spectral responses in all Landsat 5 TM+ bands, Landsat8 OLI. The 2010–2020 land cover change map indicates a mix of forest and bare land/open land change classes. Although some of the study areas has undergone noteworthy land cover change over the 10-year interval from 2010 to 2020, extensive areas of forest and bare lands were not converted to some other land use. Some of the apparent land cover change during the observation period appeared to be of an agricultural area. Fig.4. In addition, the land cover change map included areas with deforestation, which helped to illustrate the dynamic anthropogenic factors of land cover changes in the region during the observed 10-year time frame. The relief map of the study area is taken from the DEM file from the resource earthdata.nasa.gov. The relief map of the studied area identifies the elevation zones of that area, and in the surface classification, it is possible to determine at what altitudes the classification has changed. The analysis results show that between 2010 to 2020, forests in the study area, mainly in the area of 1000 m up to 2500 m, decreased and became open lands. (Fig.4).

Fig. 4. NDVI calculation. (Source: earthdata.nasa.gov)
The Land cover changes index is rather a hint at what is currently happening on the land. Maximum likelihood algorithms usage for land analysis: at the beginning, middle, and end of the growing season (summer). Growing of the season, the Maximum likelihood algorithms index helps understand how plants and trees change over time (Fig. 5).

Nevertheless, it should be kept in mind that high Maximum likelihood algorithms identification land cover classes needed to check using google earth pro in this area. Land cover categories confirmed variation in the univariate statistical values of radiation heat flux parameters (Fig. 5). Spatial parameters are characterized by a gradational change in the values of each parameter. Fig maps show the range of each parameter under study with their average and standard deviation values, give the best results in terms of land cover classification accuracy. Fig.4 compares classes and accuracy for every land cover class for classifications.

5 Conclusions

Remote sensing methods with accurate Landsat data and monitoring results can support assessing the further behavior of land cover monitoring. The results show that within 10 years, the land cover changes significantly of the mountains and highlands of Surkhandarya. As a result of 10 years of inefficient use of pastures in the mountainous and foothill areas of Surkhandarya, these areas have become open lands. The study area exhibits different land cover changes, and that land changes can cause soil erosion, floods, and landslides in the future – all of which can turn into hazards once elements are at risk. Kamashi and Shakhrisabz, in 2017, 2018, and 2019 studied the effects of climate change in the Surkhandarya region and its border areas. These weather stations provide temperature, precipitation, relative humidity, and humidity deficit information. In addition, Landsat 8 OLI images for the study area were used for land cover change analysis in 2010, 2015, and 2020. In addition, NDVI analysis for the studied area was also carried out. From these data, it can be concluded that intensive horticulture plantations implemented in the region effectively reduce climate change's impact on the agro-economic sector.
References

