Mathematical modeling of torsional vibrations of the wheel-motor unit of mains diesel locomotive UZTE16M

Abstract. The article considers methods for studying torsional vibrations of the wheel-motor block of a diesel locomotive UZTE16M. The diesel locomotives in question were modernized at the structural enterprise "O'zbekiston temir yo'llari" (Uzbekistan railways) under the joint-stock company "O'zbekiston temir yo'llari". The authors of the article developed a dynamic model for the analysis of torsional vibrational movements that occur in the traction transmissions of the UZTE16M diesel locomotive, taking into account the geometric dimensions of the electric traction motors of the main locomotives and the degree of their wear. Based on the model of the wheel-motor block of mainline locomotives, differential equations of the torsional-vibrational motion of traction gears are obtained in the form of Lagrange equations of the 2nd kind. The results of numerical studies of the amplitudes of torsional vibrations of the wheel-motor block of the UZTE16M locomotive at different frequencies are presented. All calculations were performed in the MATHCAD 15 environment.

1 Introduction

JSC "O'zbekiston temir yo'llari" carries out tasks not only for the regular and uninterrupted transportation of general-purpose goods but also to increase the economy of using both locomotives and diesel locomotives. The central unit of any rolling stock, in particular, a diesel locomotive of the UZTE16M type, is a wheel-motor unit, which, after the first repair, sharply reduces the traction force of the locomotive and reduces the coefficient of adhesion of the wheel to the rails. The repair process requires radical improvement, which is impossible without the creation of a mathematical model and dynamic models. The interaction of the wheel-motor block of the locomotive with the rails is the most important factor influencing the mechanical part of the rolling stock. The wheel-motor unit includes a wheel pair, axlebox assembly, gearbox, elastic coupling, and electric traction motor.


*Corresponding author: mamayevsherali@gmail.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
Through the efforts of these scientists, the theoretical foundations for modeling mechanical vibrations of wheel-motor units of locomotives and their technical diagnostics, including methods for modeling shaft vibrations of electric traction motors, have been developed and developed, original designs and circuit solutions of these systems and their technical means.

At the same time, not enough attention has been paid to improving the methods for modeling mechanical oscillations of the wheel-motor units of locomotives, taking into account the complex effect of external vibrations and developing an improved method for diagnosing them to extend the useful life [1-6].

The research aims to increase the efficiency of using mainline diesel locomotives by modeling mechanical vibrations of the wheel-motor blocks of mainline diesel locomotives, improving the calculation methodology.

2 Methods

Fig. 1. Calculation scheme of torsional vibrations of wheel-motor unit (WMU) of UzTE16M diesel locomotive.

The UzTE16M diesel locomotive block has a support-axial suspension of the traction electric motor ED118B(A) and a one-way gear train. The power of a locomotive diesel engine is realized through a gear wheel, in the form of traction forces, during the interaction of wheelsets with rails. The electric traction motor (TEM) ED118B(A) on one side is rigidly supported on the axle of the wheel pair through motor-axial bearings, and on the other side, it is connected through a spring suspension to the bogie frame. With such a suspension, almost half of the TEM mass is rigidly connected with the unsprung masses of the wheelset. It amounts to about 4250 kg on one WMU, which causes the occurrence of significant mechanical vibrations on the shafts in the system "railway-wheelset-traction engine", both torsional and bending and longitudinal [7–13].

The calculation scheme of the WMU is shown in Figure 1, on which the points 0, 1, 2, 3, 4 of the connections are highlighted and:
- moments of inertia of the armature TEM – \(J_0\) and sections of the armature shaft, and
The Lagrange equation for each coordinate

\[ T = \frac{1}{2} \left[ J_0 \cdot \ddot{\varphi}_0^2 + J_1 \cdot (\dot{\varphi}_0 + \varphi_1)^2 + J_2 \cdot (\dot{\varphi}_0 + \varphi_2)^2 + J_3 \cdot (\dot{\varphi}_3 + \varphi_3)^2 + J_4 \cdot (\dot{\varphi}_0 + \varphi_2 + \varphi_4)^2 \right] \]

\[ \Pi = \frac{1}{2} \left[ K_1 \cdot \varphi_1^2 + K_1 \cdot \varphi_2^2 + K_2 \cdot \varphi_3^2 + K_2 \cdot \varphi_4^2 + K_3 \cdot (\varphi_1 + \varphi_3 - \varphi_2 - \varphi_4)^2 \right] \]

\[ \partial A = M_0 \cdot \delta \varphi_0 - M_3 \cdot (\delta \varphi_0 + \delta \varphi_1 + \delta \varphi_3) - M_4 \cdot (\delta \varphi_0 + \delta \varphi_2 + \delta \varphi_4) \]

\[ \frac{\partial}{\partial t} \left[ \frac{\partial}{\partial \varphi_i} \right] + \frac{\partial T}{\partial \dot{\varphi}_i} = \frac{\partial A}{\delta \varphi_i} \]

\[ \ddot{\varphi}_0 \cdot (J_0 + J_1 + J_2 + J_3 + J_4) + \ddot{\varphi}_1 \cdot (J_1 + J_3) + \ddot{\varphi}_2 \cdot (J_2 + J_4) + \ddot{\varphi}_3 \cdot J_3 + \]

\[ + \ddot{\varphi}_4 \cdot J_4 = M_0 - M_3 - M_4 \]

\[ \ddot{\varphi}_0 \cdot (J_1 + J_3) + \ddot{\varphi}_1 \cdot (J_1 + J_3) + K_1 \cdot \varphi_1 + K_3 \cdot \varphi_3 = 0 \]

\[ \ddot{\varphi}_2 \cdot (J_2 + J_4) + K_1 \cdot \varphi_2 - K_3 \cdot \varphi_3 + \ddot{\varphi}_4 \cdot J_4 = 0 \]
\[ \dot{\varphi}_0 \cdot J_3 + \ddot{\varphi}_3 \cdot J_3 + K_2 \cdot \varphi_3 + K_3 \cdot \varphi_3 = -M_3 \]

\[ \dot{\varphi}_0 \cdot J_4 + \ddot{\varphi}_4 \cdot J_4 + K_2 \cdot \varphi_4 - K_3 \cdot \varphi_4 = -M_4 \]

For this model, the conditions for excitation of oscillations are

\[ \varphi_0(t) = \varphi_0 \cos(\omega \cdot t) \]

\[ \dot{\varphi}_0(t) = \ddot{\varphi}_0 \cos(\omega \cdot t) \]

\[ \varphi_1(t) = \varphi_1 \cos(\omega \cdot t) \quad \varphi_2(t) = \varphi_2 \cos(\omega \cdot t) \]

\[ \varphi_3(t) = \varphi_3 \cos(\omega \cdot t) \quad \varphi_4(t) = \varphi_4 \cos(\omega \cdot t) \]

\[ -\varphi_1 \cdot \omega^2 \cdot (J_1 + J_3) - \varphi_2 \cdot \omega^2 \cdot (J_2 + J_4) - \varphi_3 \cdot \omega^2 \cdot J_3 - \varphi_4 \cdot \omega^2 \cdot J_4 = \varphi_0 \cdot \omega^2 \cdot (J_0 + J_1 + J_2 + J_3 + J_4) \]

\[ \varphi_1 \cdot [K_1 + K_3 - \omega^2 \cdot (J_1 + J_3)] - \varphi_3 \cdot \omega^2 \cdot J_3 = \varphi_0 \cdot \omega^2 \cdot (J_1 + J_3) = B_2 \]

\[ \varphi_2 \cdot [K_1 - K_3 - \omega^2 \cdot (J_2 + J_4)] - \varphi_4 \cdot \omega^2 \cdot J_4 = \varphi_0 \cdot \omega^2 \cdot (J_2 + J_4) = B_3 \]

\[ \varphi_3 \cdot [K_1 + K_3 - \omega^2 \cdot J_3] = \varphi_0 \cdot \omega^2 \cdot J_3 = B_4 \]

\[ \varphi_4 \cdot [K_2 - K_3 - \omega^2 \cdot J_4] = \varphi_0 \cdot \omega^2 \cdot J_4 = B_5 \]

Whence the formula for determining the frequency of natural oscillations is obtained:

\[ \omega_1 = \sqrt{\frac{K_1}{J_1 + J_3}} \]

\[ K_1 - \omega^2 \cdot (J_1 + J_3) = 0 \]

\[ K_1 - \omega^2 \cdot (J_2 + J_4) = 0 \]
\[ \omega_2 = \sqrt{\frac{K_1}{J_2 + J_4}} \]

\[ K_2 - \omega^2 \cdot J_3 = 0 \]

\[ \omega_3 = \sqrt{\frac{K_2}{J_3}} \]

\[ K_3 \omega^4 > 0 \]

\[ \omega_4 = \sqrt{\frac{K_2}{J_4}} \]

3 Results and discussion

Numerical studies were carried out in the programming environment MATHCAD 15 for the model of torsional vibrations in the wheel-motor unit of UzTE16M locomotive. The calculation program is presented in Appendix 1 (Program 1. "Methodology for calculating parameters of the model of torsional oscillations in the wheel-motor unit of UzTE16M locomotive").

For numerical studies, 2 main modes of loading by armature speed are adopted: in continuous (continuous) mode, the armature speed of TEM ED-118A is \( n = 476 \) rpm; at maximum load mode, the speed of ED-118A armature is \( n = 2290 \) rpm.

Consider the starting torque at traction motor speed \( n = 476 \) rpm and \( t = 0 \). The angular acceleration at the given parameters in the program is \( \psi_0 = 1.193 \) rad/sec.

The initial values of the amplitudes are as follows:

\[ \psi_1 = -3.362 \cdot 10^{-5} \]
\[ \psi_2 = -1.406 \cdot 10^{-5} \]
\[ \psi_3 = -1.406 \cdot 10^{-5} \]
\[ \psi_4 = -0.871 \cdot 10^{-5} \]

The results of the calculations are shown in the form of torsional vibration graphs for the wheel motor unit (Fig. 2).
Let's make these calculations for different rotation frequencies of torque electric motors.

**Fig. 3.** Amplitudes of torsional oscillations by mass of WMU of UZ TE16M locomotive at $n=1000$ rpm.

**Fig. 4.** Amplitudes of torsional oscillations by mass of WMU of UZ TE16M locomotive at $n=1250$ rpm.
Fig. 5. Amplitudes of torsional oscillations by mass of WMU of UZ TE16M locomotive at n=1500 rpm.

Fig. 6. Amplitudes of torsional oscillations by mass of WMU of UZ TE16M locomotive at n=2000 rpm.
4 Conclusion

As a result of the research, a new method of calculating torsional oscillations in the wheel-motor unit of UzTE16M locomotive has been developed. It was found that by increasing the TEM armature rotation frequency of the UzTE16M locomotive, the amplitude of torsional oscillations WMU will increase, and the period of oscillations WMU will decrease.

References


