Design, fabrication and characterization of MoS$_2$ self-lubricating pure MoS$_2$ Coatings for space applications using PVD magnetron sputtering

M. F. Wani1, Umida Ziyamukhamedova2, Taseer A. Mufti1, Rakesh Sehgal1, and Sheikh S. Saleem1

1National Institute of Technology Srinagar, Kashmir, India
2Tashkent State Transport University, Tashkent, Uzbekistan

Abstract. Tribological components cost just a fraction of the whole spacecraft, but they often lead to failures that partially or completely disrupt the spacecraft. Mechanical components used in space applications have to withstand extreme and severe environmental conditions such as very high or very low cryogenic temperatures, high vacuum, corrosive elements and radiation. MoS$_2$ is the most widely used lubricating material in space applications. It possesses a lamellar structure with strong covalent bonds within layers and simultaneously weak van der Wall’s interlayer bonds, resulting in easy shearing of the crystals in the direction parallel to the basal planes, hence acting as a good solid lubricant. In this research, a thin film nano scale coating of MoS$_2$ was deposited on steel using Physical Vapour Deposition (PVD). The PVD technique used was the RF magnetron sputtering process. Material characterization was performed using X-Ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Raman spectroscopy. According to the results, the developed MoS$_2$ nano coatings have a polycrystalline structure with basal planes that are oriented perpendicular to the substrate surface.

1 Introduction

MX$_2$ represents the class of materials known as transition metal dichalcogenides (where M represents D block elements of the periodic table also known as transition metals and X represents the elements in group 16 of the periodic table known as chalcogens). MX$_2$ has a hexagonal crystal structure with each M layer sandwiched between two X layers in each monolayer. 2H (hexagonal) and 1T (trigonal) are the most common coordinations.
TMDCs around M atoms [5-7]. Similar to graphite and hBN, the bulk MX$_2$ layers are joined by weak van der Walls forces. This results in weak shear strength in a direction parallel to the basal planes [8-10].

Bulk MoS$_2$ exists in a large number of distinct crystal structures (polymorphs) depending on the relative arrangement of the S and Mo atoms in the layer and on the subsequent layers. The most common polymorphs identified so far are 2H (hexagonal)-MoS$_2$ and 3R (rhombohedral)-MoS$_2$ both of which have trigonal prismatic coordination around Mo atoms.

AMS 5898 is a highly corrosion resistant, pressure-nitrided martensitic stainless steel. Some of the features the material has to offer are hardness up to 60 HRC combined with outstanding toughness. Compared to normal stainless steels, it has outstanding resistance to corrosion and wear. It provides a high tempering resistance of up to 500°C [11-18].

Table 1. Parameters and properties of MoS$_2$ polymorphs [19]

<table>
<thead>
<tr>
<th>Polymorph</th>
<th>Space Group</th>
<th>Point Group</th>
<th>Atoms Per Cell</th>
<th>Stacking</th>
<th>Lattice Parameters</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>1T</td>
<td>P3 ̅m1</td>
<td>D$_3$d</td>
<td>9</td>
<td>AAAA</td>
<td>a = 5.60 Å, c = 5.99 Å</td>
<td>metallic, metastable</td>
</tr>
<tr>
<td>2H</td>
<td>P6 3/mmc</td>
<td>D$_6$h</td>
<td>6</td>
<td>ABAB</td>
<td>a = 3.16 Å, c = 12.29 Å</td>
<td>semiconducting, naturally occurring</td>
</tr>
<tr>
<td>3R</td>
<td>R3m</td>
<td>C$_3$v</td>
<td>9</td>
<td>ABCABC</td>
<td>a = 3.17 Å, c = 18.38 Å</td>
<td>semiconducting, naturally occurring</td>
</tr>
</tbody>
</table>

2 Materials and methods

The raw material AMS 5898 was purchased from Tech Steel & Materials (Holbrook, New York, USA). The material was in the form of a rod having diameter of 27 mm and length of 254 mm. The weight of the rod was measured to be 1.14 Kg.

Table 2. Chemical Composition of AMS 5898

<table>
<thead>
<tr>
<th>Element</th>
<th>Mo</th>
<th>Si</th>
<th>Mn</th>
<th>N</th>
<th>C</th>
<th>Cr</th>
<th>Va</th>
<th>Cu</th>
<th>Al</th>
<th>Fe</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight %</td>
<td>0.98-0.99</td>
<td>0.64-0.66</td>
<td>0.36-0.37</td>
<td>0.38-0.39</td>
<td>0.30</td>
<td>15.42-15.50</td>
<td>0.04</td>
<td>0.07</td>
<td>0.005-0.006</td>
<td>Balance</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Chemical Composition of AMS 5898

<table>
<thead>
<tr>
<th>Element</th>
<th>Mo</th>
<th>Si</th>
<th>Mn</th>
<th>N</th>
<th>C</th>
<th>Cr</th>
<th>Va</th>
<th>Cu</th>
<th>Al</th>
<th>Fe</th>
<th>Balance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight %</td>
<td>0.98-0.99</td>
<td>0.64-0.66</td>
<td>0.36-0.37</td>
<td>0.38-0.39</td>
<td>0.30</td>
<td>15.42-15.50</td>
<td>0.04</td>
<td>0.07</td>
<td>0.005-0.006</td>
<td>Balance</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Mechanical Properties of AMS 5898

<table>
<thead>
<tr>
<th>№</th>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tensile Strength</td>
<td>2150 MPa</td>
</tr>
<tr>
<td>2</td>
<td>Yield Strength</td>
<td>1850 MPa</td>
</tr>
<tr>
<td>3</td>
<td>Hardness</td>
<td>59 HRC</td>
</tr>
<tr>
<td>4</td>
<td>Elongation</td>
<td>3%</td>
</tr>
<tr>
<td>5</td>
<td>Toughness</td>
<td>>20 [MPa√m]</td>
</tr>
</tbody>
</table>

The samples from rod of 25mm diameter were cut to a thickness of 10mm and were polished with a Bainpol Auto automatic polishing machine to a mirror-like finish. The samples were polished first with various emery papers and then with diamond pastes. Emery papers with grit sizes of 320, 400, 600, 800, and 1000 were used for polishing, followed by polishing with 3, 1, 0.25 μm diamond pastes. The samples were then ultrasonically cleaned in an acetone bath for 5 minutes and dried in an oven for 5 minutes at 50°C. After cleaning the surface of the samples was observed under an optical microscope and surface roughness was measured using a 3D profilometer.

The coating was deposited using a PVD magnetron sputtering process. The sputtering process was carried out using MiniLab 060 by Moorfield Nanotechnology UK at CRFC Lab NIT Srinagar. In order to remove any contamination and to improve coating adhesion the substrate was pre-etched by Argon for 10 minutes at 45 Watt RF power before coating deposition. The process chamber was evacuated to base pressure of 5×10⁻⁷ mbar by a turbo-molecular pump while only Argon was allowed to enter the chamber during the deposition process. The details of coating deposition are listed in Table 4.

Table 4. Details of coating deposition

<table>
<thead>
<tr>
<th>Substrate heating</th>
<th>No</th>
<th>Deposition temperature</th>
<th>Working Pressure</th>
<th>Power</th>
<th>Ar flow</th>
<th>Deposition time</th>
<th>Target to substrate distance</th>
<th>Coating thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 W</td>
<td>4.2 sccm</td>
<td>20 minutes</td>
<td>16 cm (approx)</td>
<td>76 m</td>
</tr>
</tbody>
</table>

Characterization of deposited coatings involves determining the film thickness, chemical composition, crystallographic structure, and surface morphology. The topographical and 3D surface images, surface roughness and coating thickness were determined using an Rtec 3D optical profilometer with AFM and optical microscope (Leica DM6000 M). Furthermore, the surface roughness, Rₐ, of the polished samples and coatings was calculated using Gwyddion and Hystriontriboview software.

X-ray diffraction (XRD) technique is the most commonly used for determining the crystallographic structure of coatings. It provides details on the crystal orientation, phases present, lattice parameters, crystal structure, degree of crystallinity, etc. The XRD pattern of the base material and the coatings were recorded using a Rigaku SmartLab X-ray diffractometer. The X-ray diffractogram pattern was compared with the ICDD powder diffraction database using Rigaku's PDXL integrated XRD software. However, the X-ray diffraction pattern of the coating was determined using GIXRD to avoid any interference from the substrate. The gazing incidence angle was fixed to 0.8° and the diffraction was measured from 5° to 80°, with a step width of 0.04°. The X-ray diffractogram pattern of the coating was also compared with the ICDD database.

FESEM has the benefit of being able to produce high resolution images. This improves the ability to observe ultrafine surface properties. FESEM images of the substrate material (AMS 5898) and the coating were taken.
The coating was obtained using ZEISS GeminiSEM 500. During the whole process the system vacuum was maintained below 1×10^{-5} mbar.

The chemistry and crystal structure of MoS$_2$ coatings were determined using Raman spectroscopy. The Raman analysis in this study was performed at the CRFC Lab, NIT Srinagar, using a Renishaw inVia Raman microscope. A focused green laser beam with a wavelength of 532 nm was used to acquire Raman spectra of the coating. The laser power was set to 50 mW with a 60 second exposure time, and the spectrum was acquired from 0 to 3200 cm$^{-1}$.

3 Results and discussion

Fig. 1. (a) 3D surface topographical image and (b) Surface roughness of a representative sample.

The substrate material (AMS 5898) after machining to the required dimensions was polished to a mirror like finish. The surface roughness of all the samples was less than 10 nm. The 3D surface topographical image and the surface roughness of a representative sample are shown in Figure 1 (a) and (b) respectively. The figure shows that the surface is evenly polished and has a smooth texture, and the average surface roughness, Ra, of this sample is measured to be 5.618 nm.

Fig. 2. X-Ray diffractogram of AMS 5898.
Kα radiation (λ= 1.5406 Å) at 40 kV and 30 mA was used to generate the X-ray diffractogram of the material and the diffraction pattern was recorded for 2θ ranging from 10° to 90°. Figure 2 represents the X-ray diffractogram of AMS 5898. The crystal structure of AMS 5898 is highly crystalline, with prominent peaks at 2θ values corresponding to 44.55°, 64.85°, and 82.14°.

The FESEM micrographs of nanocoating show that a uniform coating of MoS₂ has been successfully developed and exhibits a consistent floral or worm-like morphology [20-28]. The coating features a lamellar structure with MoS₂ basal planes (002) developed perpendicular to the substrate but randomly oriented. Fig. 3 depicts the FESEM images of MoS₂ nanocoating at different magnifications.

The GIXRD of the nanocoating is shown in Fig. 4(a). It depicts that the deposited MoS₂ nanocoating has a polycrystalline structure with crystal growth along several directions. It has typical diffraction peaks of (002), (100) and (110) at 2θ values of 13.87°, 33.3° and 58.63° corresponding to 2H-MoS₂ [29-34].

Fig. 3. FESEM Images of MoS₂ nanocoating at different magnifications.

Fig. 4. (a) GIXRD and (b) Raman spectrum of MoS₂ nanocoating.
The Raman spectrum of the MoS$_2$ nanocoating is displayed in Figure 4 (b). The spectra reveal two notable peaks of E$_{2g}$ mode at 375 cm$^{-1}$ and A$_{1g}$ mode at 409 cm$^{-1}$. The E$_{2g}$ mode is formed by the vibration of S and Mo atoms in different directions but in the same plane, whereas the A$_{1g}$ mode is formed by the out of plane vibration of S atoms only. Depending on the number of MoS$_2$ layers these peaks may shift slightly towards left or right [35-40]. Therefore, Raman peaks corresponding to E$_{2g}$ and A$_{1g}$ modes confirm the presence of MoS$_2$.

The surface roughness of the coating was evaluated using Scanning Probe Microscope (SPM) imaging and the average surface roughness (Ra) was measured to be 4.21 nm as shown in Fig. 5.

4 Conclusions

In this study, the material characteristics of the MoS$_2$ coating were evaluated. The coating was deposited on AMS 5898 steel substrate using a magnetron sputtering process. The coating was characterized using XRD, FESEM and Raman spectroscopy. The developed coating has a polycrystalline structure with pronounced peaks (002), (100), and (110) corresponding to MoS$_2$. The FESEM image showed that the developed MoS$_2$ coating has a worm or flower structure with basal planes developed perpendicular to the substrate. The Raman spectrum of the coatings shows two notable peaks of E$_{2g}$ mode at 375 cm$^{-1}$ and A$_{1g}$ mode at 409 cm$^{-1}$, thus confirming the presence of MoS$_2$.

References

4. Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 2D materials and van der Waals heterostructures Science 353 aac9439. DOI: 10.1126/science.aac9439

5. Somvanshi D and Jit S 2020 Transition metal dichalcogenides based two-dimensional heterostructures for optoelectronic applications Micro and Nano Technologies ed S Jit and S B T-2D N H M Das (Elsevier) pp 125–49. DOI: https://doi.org/10.1016/B978-0-12-817678-0.00005-1

Fleischauer P D 1984 Effects of crystallite orientation on environmental stability and lubrication properties of sputtered MoS$_2$. ASLE Transactions 27, 82–8. DOI: 10.1080/05698198408981548

