Features of using the smoothed instantaneous wave energy history (SIWEH) to analyze the group structure of sea waves

Alexander Zapevalov

Abstract. The methodological features of determining the characteristics of wave groups of sea surface waves based on the function smoothed instantaneous waves through energy (SIWEH) are analyzed. The analysis is carried out by numerical simulation based on an analytical model of the group structure of waves. It is shown that when the grouping of sea waves is investigated using the SIWEH function, it is advisable to calculate the Groupiness Factors of Height (GFH) in two stages. At the first stage, transform the SIWEH function into a wave envelope, and at the second stage, calculate the GFH using a known envelope. The previously proposed direct calculation of GFH by the SIWEH function leads to significant errors. The effect of the change in the cutoff frequency of the Bartlett filter at a fixed frequency of dominant waves on the calculated values of GFH is investigated. It is shown that when the cutoff frequency changes $\pm 30\%$, the GFH changes do not exceed 5%.

1 Introduction

The group structure of surface waves plays an important role in various technical applications. The effect of wave groups on ships and coastal structures is stronger than the effect of ungrouped waves [1-3]. The group structure has a significant impact on the generation of infrasound by the sea surface [4], high power of infrasound in stormy conditions can lead to the appearance of microseisms in the earth crust [5].

Several methods are used to isolate a group of waves: Hilbert transform [7], Markov chain model [8], wavelet transform [9].

The function smoothed instantaneous waves through energy (SIWEH) has become widespread in the study of the group properties of marine surface waves [10-12]. The SIWEH function proposed in [13] is based on the instantaneous wave energy process. The advantage of SIWEH functions is the simple analytical representation and clarity.

* Corresponding author: sevzepter@mail.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
When using the SIWEH function, it is necessary to take into account a number of methodological features. The dimensions of the envelope function and function SIWEH are different. As a result, we cannot directly map these functions. The approximate relation between them can be given by

\[E(t) \approx A(t) \left(\frac{\cos(2\pi f_t t)}{\sqrt{2}} \right) \]

where \(E(t) \) is function SIWEH, \(A(t) \) is wave envelope, \(t \) is time.

A feature of the construction of the SIWEH function is the use of a low pass filter. The Bartlett window is used \[\text{[13]} \]. Different types of filters and the difference in their parameters can affect the characteristics of wave groups obtained using the SIWEH function \[\text{[10]} \]. Changing the shape and parameters of the filter does not have a noticeable effect on the estimates of group characteristics if one system of waves is observed on the surface and the wave spectrum is unimodal \[\text{[11]} \]. Errors can occur if there are two or more wave systems with comparable energy (multimodal wave spectrum).

The purpose of the work is to analyze the features of using the SIWEH function to isolate groups of waves in a complex wave field, when two wave systems are present on the sea surface.

2 Materials and methods

2.1 Analytical model of the wave group

The profile of a wave having a group structure is usually described as the product of an wave envelope and a carrier wave

\[\eta(x,t) = aA(x,t)\xi(x,t), \]

where \(a \) – amplitude multiplier; \(A(x,t) \) – envelope, \(\xi(x,t) \) – carrier wave.

A simple analytical model describing the wave envelope and the carrier wave was proposed in \[\text{[14]} \]

\[A(x,t) = \left(- \rho \left(\frac{k x - (\omega - \rho t)}{\rho} \right) \right), \]

\[\xi(x,t) = \left(- \rho \left(\frac{k x - \omega t}{\rho} \right) \right), \]

where \(k \), \(\omega \), \(\rho \) are the wave number, frequency (circular), and density, respectively.
\[\omega = g k, \quad (5) \]

where \(g \) is the gravitational acceleration.

Usually, the geometric structure of the sea surface is studied from measurements at one or more points, using string gauges or wave buoys \[15, 16\]. If the parameter \(x \) is fixed, then equation (2) describing the change in the sea surface level at a given point can be used for numerical simulation and in situ analysis of wave measurement data.

The advantage of the model (2)-(4) is that it allows taking into account the observed deviations of the distribution of sea surface elevations from the Gaussian distribution \[17\].

Note that the average value \(\langle 0 \rangle \), \(\neq t x \), therefore, when modeling a group of waves in equation (2), the replacement is performed.

The third statistical moment calculated according to (4) for the carrier wave \(\langle tx, \rangle \) always has a positive sign, which corresponds to a pointed crest and a flat trough. It should be taken into account that numerous measurements carried out in different areas of the World Ocean show that the skewness of sea surface elevations can take negative values \[16, 18\]. To simulate a similar situation after replacing (6) in equation (2), it is necessary to change the sign \(\langle tx, \rangle \).

The situation when two wave systems are present on the sea surface, we will consider in the approximation that these systems do not interact with each other. This makes it possible to describe the change in surface elevations by the superposition of two wave systems \(\langle \rangle_{1} \), \(\langle \rangle_{2} \). For the sake of certainty, we will assume that \(\langle 0 \rangle_{1} \), \(\omega \leq \langle 0 \rangle_{2} \). Here and further, the superscript indicates the number of the wave system to which this parameter corresponds.

An example of how the elevation of the sea surface changes at a fixed point is shown in Fig. 1. When constructing \(\langle txt, \rangle \), it was assumed that \(\langle 0 \rangle_{1} \), \(\omega \), \(\langle \rangle_{2} \) were considered. On the top fragment of Fig. 1 shows the profiles of two wave systems, normalized so that their maximum value is equal to one. On the abscissa, time is given in a dimensionless form, normalized to the period of the carrier wave \(\langle 0 \rangle_{1} \).

\[\eta_{2}(x,t) = \eta_{1}(x,t) + \eta_{2}(x,t), \quad (7) \]

\[\omega_{1}^{(1)} < \omega_{2}^{(1)} \]

\[\eta_{2}(x,t) = a^{(1)}/a^{(1)} \quad \omega_{2}^{(1)} = \omega_{1}^{(1)} \quad T^{(1)} \]

\[\eta_{2}(x,t) = \eta_{1}(x,t) + \eta_{2}(x,t), \quad (7) \]

\[\omega_{1}^{(1)} < \omega_{2}^{(1)} \]

\[\eta_{2}(x,t) = a^{(1)}/a^{(1)} \quad \omega_{2}^{(1)} = \omega_{1}^{(1)} \quad T^{(1)} \]

2.2 Characteristics of wave groups

The main parameter that describes the group structure of surface waves is the Groupiness Factors of Height (GFH). This parameter characterizes the depth of wave height modulation in the group. The GFH for a known wave envelope is given as \[10\]

\[A = \sqrt{\sigma_{A}/A}, \quad (8) \]
where \(\sigma_A \) is standard deviation of the wave envelope, \(A \) is average of the wave envelope.

The subscript \(GFH \) shows the calculation method.

Another important parameter used in engineering calculations is the Group Length Factors (GLF) \[19, 20\].

\[
\rho = \frac{\omega_p}{\omega_{pA}} \tag{9}
\]

where \(\omega_p \) and \(\omega_{pA} \) are the peak frequencies of the wave spectrum and the wave envelope spectrum.

If the model (2)–(4) is used, it can be shown that

\[
2 \rho = G_{LF} \tag{10}
\]

Fig. 1. Change of the wave profile in the presence of two wave systems: blue curve is \(\eta_1(t) \); green curve is \(\eta_2(t) \); red curve is \(\eta_3(t) \).

2.3 SIWEH function

...
\[
E(t) = \int_{t_p - \infty}^{t_p \infty} \xi(t + \tau)Q(\tau) d\tau,
\]
(10)

\[
Q(\tau) = \begin{cases}
-|\tau|/T_p & \text{if } |\tau| \leq T_p \\
0 & \text{if } |\tau| > T_p
\end{cases}
\]
(11)

\[
S = \frac{1}{\overline{E}} \sqrt{\frac{T_w}{T_w} \int [E(t) - \overline{E}]^2 dt}
\]
(12)

\[
\overline{E} = \frac{1}{T_w} \int E(t) dt
\]
(13)

3 Numerical simulation and discussion

3.1 Wave envelope and SIWEH function

Based on Fig. 2, two conclusions can be drawn. First, in the area of maximum values of the modulated carrier wave, the inequality \(A_E(t) < A(t) \) takes place. Second, estimates \(S \) are significantly higher than \(A \). Previously, similar discrepancies in calculations GFH by different methods were noted in [10]. The estimates \(AE \) are much closer to the estimates of \(A \), than \(S \).
3.2 The effect of changing the frequency of the carrier wave

Both individual waves and groups of waves are characterized by strong variability in space and time. Not only the energy of the waves changes, but also their frequency. The Bartlett window \(\tau \) is set for the period of the dominant wave averaged over the measurement session, which does not allow taking into account local period changes. To appreciate this effect, consider how changing the filter parameter affects \(AE \) and \(S \). To do this, we will carry out calculations by replacing \(T_p \rightarrow nT_p \). Changing the parameter \(n \) leads to a change in the Bartlett window width in the time domain, smaller values of \(n \) lead to a narrower window \(\tau \). As a result of changing the parameter \(n \), the filter cutoff frequency is shifted. Cutoff frequency is related to the filter width by the ratio \(T_p = \frac{1}{f} \).

The calculation results are shown in Fig. 3. It can be seen that changing the width of the \(\eta \) has little effect on the calculated values \(AE \) and \(S \). A relative change in the width of the \(Q(\tau) \) results in a change of \(AE \) and \(S \) less than 5%.
Dependences of AE and $SGFH$ on the width of the Bartlett window (11). Blue lines are $SGFH$, red lines are AE, solid lines correspond $A = 83.0$, dashed lines correspond $A = 51.0$.

3.3 Two wave systems

The ability to distinguish groups of waves using the SIWEH function when two wave systems are present is shown in Fig. 4.
The envelope describes a complex wave profile well. As in the case when the wave field is determined by a single wave system, small excesses \(\eta_e > A_e \) occur only for the crests of high waves.

4 Conclusion

The analysis of the possibilities and limitations of calculating the characteristics of wave groups of sea surface waves based on the SIWEH function is carried out. The analysis was carried out by numerical simulation based on an analytical model describing the group structure of waves.

It is shown that when the grouping of sea waves is investigated using the SIWEH function, it is advisable to calculate the GFH in two stages. At the first stage, transform the SIWEH function into a wave envelope, and at the second stage, calculate the groupness factor using a known envelope. The previously proposed direct calculation of GFH by the SIWEH(12) function leads to significant errors. It is also shown that the change in the cutoff frequency of the Bartlett window has little effect on the calculated values of GFH, when the filter cutoff frequency changes by \(\pm 30\% \), the pair changes do not exceed \(\pm 5\% \).

5 Acknowledgments

The work was carried out within the framework of the state task on the Theme: FNNN-2021-0004 “Fundamental studies of oceanological processes which determine the state and evolution of the marine environment influenced by natural and anthropogenic factors, based on observation and modeling methods”

References

