The trajectory of sustainable development of the education system of the Republic of Belarus in the context of the formation of the information economy

Alexander M. Baranov1,*, Natalia F. Kadol2

1 Francisk Skorina Gomel State University, Gomel, Belarus
2 Russian Presidential Academy of National Economy and Public Administration, Moscow, Russia

Abstract. The purpose of the work is to determine the optimal trajectory for the development of the education system of the Republic of Belarus in the conditions of the formation of an information society. In the work the author's consider the evolution of the education system in the context of institutional transformations related to technological development in convergence with the development of socio-economic interactions; additionally the author's systemize the indicators of the development of the education system in the Republic of Belarus for 2017-2021 as the basis for the generation of the intellectual capital of the information economic system and the basis for its further digital transformation; the author's calculate a generalized average growth rate of indicators of the system of education and generation of intellectual capital in the Republic of Belarus for 2017-2021 and propose an integral indicator of its capacity. The author's create the model of the dependence of the Education Index of Belarus as a part of Human Development Index and the indicators of the development of the system of education, generation of intellectual capital; the author's give recommendations for improving the Human Development Index of Belarus as the part of the general methodology for the development of an information economy.

Keywords: Education, anthropogenic capital, science, information, knowledge

1 Introduction

According to the methodology of international research structures that assess the potential for the development of the country's economy – the main institution that provides the formation of a basis for intellectual development is the education system; it is advisable to define it as one of the most important factors determining the level of economic

* Corresponding author: axmbaranov@inbox.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
development of the country. Proper implementation of new educational principles in the society and economy of the 21st century will contribute to the formation of an anthropogenic basis for the transformation of the socio-economic system into an information economy, and will ensure the formation of new sectors and industries. However, the education system must go hand in hand with a new institutional platform that ensures the generation of knowledge and technological progress for future generations. At the same time, the most important task is to assess the contribution of various indicators of the education system to the overall socio-economic development of the country in order to determine the optimal trajectory for its improvement. This problem has received particular relevance in the context of the development of the information economy and the information society.

2 Materials and Methods

The purpose of the work is to determine the optimal trajectory for the development of the education system of the Republic of Belarus in the conditions of the formation of the information society. This goal required setting the following tasks: to determine the growth rate of various indicators of the development of the education system of the Republic of Belarus over the past ten years, to develop an integral indicator of the development of the education system and the generation of intellectual capital in Belarus, to determine and prove mathematically factors that make influence on the Education Index as a part of Human Development Index of the Belarus.

Various methodological approaches of I.Illich [12], S.Papert, G.Caperton [22], O.Levrini, G. Tasquier, E.Barelli, A.Laherto, E.Palmgren, L.Branchetti, C.Wilson [17] reflect the different functions of education in the field of economics, culture, politics, structuring society. At the same time, in all methodological approaches, the definition of education as a social institution is based on the backbone uniform principle of quantification of education as a special system of modern society, which takes various forms of social institutionalization. There is no doubt that education is the most important public good that contributes to the formation of a modern person, an intellectually and morally developed personality, in this regard, the most important function of education is the transfer of knowledge, experience and socially necessary information as one of the main institutional mechanisms for the socialization of individuals. In accordance with the methodology of the United Nations specialized agency for education, science and culture (UNESCO), in accordance with the presented in the 2021 Global Education Monitoring Report, the quality of anthropogenic capital directly affects economic growth and is closely interconnected with the quality of education as its determining element (the most significant impact, according to experts, is higher education, which is proved including statistical information, demonstrating the correlation between the employment rate and the level of education of the population). A.V. Ostrovsky, M.V. Kudina [21] notes that technological development in convergence with the development of socio-economic relations determines institutional transformations. These transformations form an institutional environment conducive to the generation of new ideas. Subsequently, feedback is that the received ideas begin to influence the relationship of actors in the socio-economic system. After a certain period of time, institutions have an impact on industrial relations. An important and extremely controversial task is to determine the institutional mechanisms of the reverse influence of ideas and subjective actions on the development of the economy [10].

The research question, theories and methods of education system and its influence on the social and economic sphere deeply and versatile reflected in the scientific works of

However, the evolution of the education system in the context of institutional transformations related to technological development in convergence with the development of socio-economic relations have not been fully developed at present. In addition, an integral indicator of the development of the education system and the generation of intellectual capital of Belarus has not been developed. It is necessary to create the model of the dependence of the Education Index as a part of Human Development Index on the indicators of the education, generation of intellectual capital. Besides, the methods for the formation of the country's information economy in the context of the education system requires justification [19].

The author's tried to offer their vision of solving these problems by creating the element of methodology for the formation of the country's information economy in the context of strengthening individual elements of the education system as a development institute.

Of course, the research suggests some limitations related to the use of the author's method. There is no enough connection between researchers and practitioners in this field. However, empirical data on education system in the Republic of Belarus make it possible to note patterns confirming the main hypotheses of the author's.

2 Results

Technological development in convergence with the development of socio-economic relations determines institutional transformations. These transformations forms an institutional environment conducive to the generation of new ideas. In the future, a feedback will be formed, in which the received ideas begin the influence on relationship of actors in the socio-economic system. After a certain period of time, institutions have an impact on industrial relations. An important and extremely controversial task is to determine the institutional mechanisms of the reverse influence of ideas and subjective actions on the development of the economy [2]. Without an adequate education system, it is not possible to ensure real sustainable development on an endogenous basis. It is no coincidence that the State Program "Digital Development of Belarus" for 2021-2025 as the priority regulates ensuring the availability of education, based on the use of modern IT both to improve the quality of the educational process and to prepare citizens for life and work in the digital economy [3].
However, from our position, before considering the digital transformation of education it is necessary to assess the dynamics of its current level of development (1).

\[A_E = \sqrt[n]{(A e_1 \times \ldots \times A e_n)} \]

where \(A_E \) – the indicators of systems of education and generation of intellectual capital average growth rate;

\(A e_n \) – average growth rate of 1...n elements of systems of education and generation of intellectual capital.

The negative trends in the current level of development of the education system in the period 2012-2021 include a decrease in the number of graduates of educational institutions (stage I) – with each period, the average decline was 3.24 thousand; the number of students and undergraduates per 10,000 people decreased by an average of 20.3 with each period. The output of specialists with a diploma of higher education and a master's degree decreased – the negative rate of absolute growth amounted to -5 people per 10,000 population. Positive trends include an increase of the proportion of people who have completed postgraduate studies with dissertation defense; increase the number of graduates of educational institutions (II stage) – absolute growth is the 0.35 thousand of people. These indicators can be attributed both to the sphere of education and to the sphere of science, because they characterize the qualitative structure of anthropogenic capital. At the same time, the indicator of consolidated budget expenditures on education and the share of the higher education sector in domestic expenditures on research and development remain at a consistently high level [23].

Table 1. Indicators of the development of the education system in the Republic of Belarus, 2012-2021

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduates of educational institutions (I stage of higher education), thousands of people</td>
<td>84.55</td>
<td>82.72</td>
<td>81.14</td>
<td>77.97</td>
<td>74.57</td>
<td>80.9 6</td>
<td>64.89</td>
<td>57.45</td>
<td>54.64</td>
<td>55.4/57.1</td>
<td>95.41</td>
</tr>
<tr>
<td>Graduates of educational institutions (II stage of higher education), thousands of people</td>
<td>3.06</td>
<td>3.32</td>
<td>3.76</td>
<td>4.52</td>
<td>5.03</td>
<td>5.92</td>
<td>6.77</td>
<td>7.48</td>
<td>7.09</td>
<td>6.2/5.85</td>
<td>108.16</td>
</tr>
</tbody>
</table>
However, from our position, before considering the digital transformation of education it is necessary to assess the dynamics of its current level of development (1).

\[A_{\text{EE}} = n (A_{\text{ee}}_1 \times \ldots \times A_{\text{ee}}_n) \]

where – the indicators of systems of education and generation of intellectual capital, \(A_{\text{EE}} \) – average growth rate; \(A_{\text{ee}} \) – average growth rate of 1...n elements of systems of education and generation of intellectual capital.

The negative trends in the current level of development of the education system in the period 2012-2021 include a decrease in the number of graduates of educational institutions (stage I) – with each period, the average decline was 3.24 thousand; the number of students and undergraduates per 10,000 people decreased by an average of 20.3 with each period.

The output of specialists with a diploma of higher education and a master's degree decreased – the negative rate of absolute growth amounted to -5 people per 10,000 population. Positive trends include an increase of the proportion of people who have completed postgraduate studies with dissertation defense; increase the number of graduates of educational institutions (II stage) – absolute growth is the 0.35 thousand of people. These indicators can be attributed both to the sphere of education and to the sphere of science, because they characterize the qualitative structure of anthropogenic capital. At the same time, the indicator of consolidated budget expenditures on education and the share of the higher education sector in domestic expenditures on research and development remain at a consistently high level [23].

Table 1. Indicators of the development of the education system in the Republic of Belarus, 2012-2021

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average growth rate</td>
<td>64.1</td>
<td>72.5</td>
<td>69.4</td>
<td>71.3</td>
<td>68.3</td>
<td>80.4</td>
<td>69.8</td>
<td>65.8</td>
<td>63.7</td>
<td>99.92</td>
</tr>
<tr>
<td>The number of graduates of</td>
<td></td>
</tr>
<tr>
<td>educational institutions</td>
<td>5</td>
<td>5.4</td>
<td>4.8</td>
<td>7.1</td>
<td>9.1</td>
<td>10.7</td>
<td>10.2</td>
<td>8.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(II stage of higher education)</td>
<td></td>
</tr>
<tr>
<td>Graduated specialists with</td>
<td>183</td>
<td>181</td>
<td>178</td>
<td>174</td>
<td>181</td>
<td>200</td>
<td>165</td>
<td>150</td>
<td>143</td>
<td>96.96</td>
</tr>
<tr>
<td>a high school diploma and</td>
<td></td>
</tr>
<tr>
<td>diploma of master's degree</td>
<td></td>
</tr>
<tr>
<td>per 10,000 people employed in</td>
<td></td>
</tr>
<tr>
<td>the economy</td>
<td></td>
</tr>
<tr>
<td>The number of postgraduates</td>
<td>1075</td>
<td>1,172</td>
<td>1,148</td>
<td>957</td>
<td>828</td>
<td>803</td>
<td>857</td>
<td>777</td>
<td>848</td>
<td>97.08</td>
</tr>
<tr>
<td>from the educational</td>
<td></td>
</tr>
<tr>
<td>institutions, people</td>
<td></td>
</tr>
<tr>
<td>The number of postgraduates</td>
<td>65</td>
<td>44</td>
<td>51</td>
<td>42</td>
<td>53</td>
<td>60</td>
<td>69</td>
<td>94</td>
<td>89</td>
<td>104.01</td>
</tr>
<tr>
<td>from doctoral studies, people</td>
<td></td>
</tr>
<tr>
<td>The share of people who</td>
<td>6.1</td>
<td>11.9</td>
<td>17.6</td>
<td>14.3</td>
<td>7.5</td>
<td>26.7</td>
<td>8.7</td>
<td>13.8</td>
<td>13.5</td>
<td>110.22</td>
</tr>
<tr>
<td>completed postgraduate studies with the defense of a dissertation, %</td>
<td></td>
</tr>
<tr>
<td>The share of people who</td>
<td></td>
</tr>
<tr>
<td>completed doctoral studies with the defense of a dissertation, %</td>
<td></td>
</tr>
<tr>
<td>The number of employees of organizations, involved in the field of education, thousands of people</td>
<td>429.85</td>
<td>417.28</td>
<td>410.67</td>
<td>410.17</td>
<td>419.06</td>
<td>415.31</td>
<td>414.42</td>
<td>414.17</td>
<td>400.63</td>
<td>395</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
</tr>
<tr>
<td>The number of workers in the field of education with a Ph.D degree</td>
<td>9,072</td>
<td>9,043</td>
<td>8,932</td>
<td>8,825</td>
<td>8,584</td>
<td>8,501</td>
<td>8,372</td>
<td>8,264</td>
<td>8,118</td>
<td>7,995</td>
</tr>
<tr>
<td>The number of workers in the field of education with a Doctorate degree</td>
<td>1,375</td>
<td>1,346</td>
<td>1,348</td>
<td>1,341</td>
<td>1,335</td>
<td>1,337</td>
<td>1,338</td>
<td>1,318</td>
<td>1,308</td>
<td>1,223</td>
</tr>
<tr>
<td>Consolidated budget expenditures on education, % of GDP</td>
<td>5</td>
<td>5</td>
<td>4.8</td>
<td>4.8</td>
<td>4.9</td>
<td>4.8</td>
<td>4.8</td>
<td>5.0</td>
<td>5.0</td>
<td>100</td>
</tr>
<tr>
<td>Investments in the fixed assets on the development of education, in % of the total volume of investments in fixed assets</td>
<td>1.1</td>
<td>1.2</td>
<td>1.7</td>
<td>1</td>
<td>1</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>106.35</td>
</tr>
<tr>
<td>The share of the higher education sector in internal spending on research and development, %</td>
<td>10</td>
<td>10.8</td>
<td>11.7</td>
<td>10.8</td>
<td>9.6</td>
<td>9.4</td>
<td>9.6</td>
<td>10.1</td>
<td>10.0</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Source [3]

The generalized average growth rate of indicators of the education system and the generation of intellectual capital will be as follows:

\[A_E = \frac{1}{16} \sqrt[16]{(Ae_1 * ... * Ae_{16})} = 100.947 \]

(2)
Since the indicator is < 105%, it can be stated that the level of development of the education system, according to the above criteria is below average.

According to the UNDP methodology, one of the main international indices, characterizing the development of the education system and the production of anthropogenic capital is the Human Development Index (HDI). Consider the rating of the Republic of Belarus by it [11] (picture 1).

Pic. 1. Ranking the Human Development Index of the Republic of Belarus

Source [11]

HDI dynamics for Belarus in 2012-2018 had a generally positive trend, in 2019-2020 there was a decrease in the Index, including in terms of the development of the education system, then in 2021 the Index slightly increased. Education index of the countries of the world (Education Index) is a combined indicator of the United Nations Development Program (UNDP), which measures the achievements of a country in terms of the achieved level of education of its population. The index is considered as one of the key indicators of social development and was used to calculate the Human Development Index until 2019 (picture 2).

Pic. 2. Ranking the Education Index of the Republic of Belarus

Source [11]

According to the results of the correlation analysis, the factors «Output ratio of the specialists with diploma of higher education, %» and «The share of people who completed postgraduate studies with the defense of a dissertation, %» have the greatest positive impact
on the resulting indicator. Let's make a multiple regression with the closed by correlation parameters of the development of the education system of the Republic of Belarus for 2012-2019 (table 2).

Table 2. Multiple regression with close parameters

<table>
<thead>
<tr>
<th>Output ratio of the specialists with diploma of higher education, %</th>
<th>The share of people who completed postgraduate studies with the defense of a dissertation, %</th>
<th>Rating of Republic of Belarus by Education Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.1</td>
<td>5</td>
<td>0.833</td>
</tr>
<tr>
<td>72.5</td>
<td>5.4</td>
<td>0.839</td>
</tr>
<tr>
<td>69.4</td>
<td>5.8</td>
<td>0.838</td>
</tr>
<tr>
<td>71.3</td>
<td>4.8</td>
<td>0.837</td>
</tr>
<tr>
<td>68.3</td>
<td>7.1</td>
<td>0.839</td>
</tr>
<tr>
<td>80.4</td>
<td>9.1</td>
<td>0.842</td>
</tr>
<tr>
<td>69.8</td>
<td>10.7</td>
<td>0.843</td>
</tr>
<tr>
<td>65.8</td>
<td>10.2</td>
<td>0.838</td>
</tr>
</tbody>
</table>

Source: own development

Let's skip intermediate calculations. Regression Equation (evaluation of the regression equation):

\[Y = 0.8089 + 0.000342X1 + 0.000786X2 \] (3)

The multiple correlation coefficient can be determined through the matrix of pairwise correlation coefficients:

\[\Delta_r = 1 - 0.6454 0.7013 0.6454 1 0.1525 0.7013 0.1525 1 = 0.206, \] (4)

\[\Delta_{r11} = 1 - 0.1525 0.1525 1 = 0.977, \] (5)

\[R = \sqrt{1 - \frac{\Delta_r}{\Delta_{r11}}} = \sqrt{1 - \frac{0.206}{0.977}} = 0.888. \] (6)

where \(\Delta_r \) – the determinant of the matrix of paired correlation coefficients; \(\Delta_{r11} \) – the determinant of the interfactorial correlation matrix.

Determination coefficient \(R^2 = 0.788 \). The correlation between \(Y \) and factors \(X_i \) is strong.
Let's test the hypothesis about the overall significance – the hypothesis about the simultaneous equality to zero of all regression coefficients with explanatory variables: H0: \(R^2 = 0; \beta_1 = \beta_2 = ... = \beta_m = 0 \). H1: \(R_2 \neq 0 \).

To determine the value of the model in general, the Fisher test or the F-test is used, which is equal to the ratio of the total variance to the residual:

\[
F = \frac{R^2(n-m-1)}{(1-R^2)m} = \frac{0.788(8-2-1)}{(1-0.788)^2} = 9.29, \tag{7}
\]

where \(n \) – the number of observations, \(m \) – the number of factors of the equation.

Table value at degrees of freedom \(k_1 = 2 \) and \(k_2 = n-m-1 = 8-2-1 = 5 \), \(F_{kp}(2;5) = 5.79 \).

Since the actual value of \(F > F_{kp} \), the coefficient of determination is statistically significant and the regression equation is statistically reliable (i.e., the coefficients are jointly significant).

The most detailed indicator of the presence of problems, associated with multicollinearity is the coefficient of variance increase, defined for each variable as:

\[
VIF(b_{1,2}) = \frac{1}{1-R_i^2} = \frac{1}{1-0.1525^2} = 1.0238. \tag{8}
\]

where \(R_i^2 \) – the multiple determination coefficient in the regression \(X_j \) to other \(X \).

Multicollinearity will be indicated by \(VIF \) from 4 and above for at least one \(j \). According to this criterion, there is no multicollinearity.

The degree of autocorrelation of processes is measured by the autocorrelation coefficient, which establishes a correlation relationship between current and past observations of the time series.

The first-order autocorrelation coefficient \(r_1 \) determines the relationship between adjacent levels of series \(e_i \) and \(e_{i-1} \).

To determine the degree of autocorrelation, we can calculate the autocorrelation coefficient and check its significance using the standard error criterion. The standard error of the correlation coefficient is calculated using the formula:

\[
S_{\rho} = \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{8}} = 0.35, \tag{9}
\]

where \(n \) – number of periods.

If the first-order autocorrelation coefficient \(r_1 \) is in the range: \(-3.163*0.354 < r_1 < 3.163*0.354\), then we can assume that the data does not show the presence of first-order autocorrelation.

Using the calculation table, we get:

\[
r_1 = \frac{\sum_{i=1}^{i-1} e_i e_j}{\sum_{i=1}^{i-1} e_i^2} = \frac{-0.0000008}{0.000014} = -0.57, \tag{10}
\]

where \(e_i \) – mean value of the initial time series; \(e_{i-1} \) – average value of time series shifted by 1.

Since \(-1.118 < r_1 = -0.57 < 1.118\), the independence property of the residues holds. There is no autocorrelation.

As the result of calculations, the multiple regression equation was obtained: \(Y = 0.8089 + 0.000342X_1 + 0.000786X_2 \). An economic interpretation of the model parameters: an
increase in X1 (Output ratio of the specialists with diploma of higher education, %) by 1 unit of measure leads to an increase in Y (Education Index of the Republic of Belarus) by an average of 0.000342 units; an increase in X2 (The share of people who completed postgraduate studies with the defense of a dissertation, %) by 1 unit leads to an increase in Y by an average of 0.000786 units. According to the maximum coefficient $\beta_2=0.617$, we make conclusion that the factor X2 has the greatest influence on the result Y. The statistical significance of the equation was checked using the coefficient of determination and the Fisher criterion. In the research situation, 78.87% of the total Y variability was found to be due to a change in Xj factors.

Thus, our research correlates with the methodology for calculating the Education Index, which is the basic component of the Human Development Index. The most important factor linking human development indices, education system development and research activity indicators. In addition to the number of graduates who have successfully graduated from educational institutions, the qualitative component of labor resources is important for the development of the education system – we need to increase the number of people who defend their dissertation after postgraduate studies.

3 Discussion

Despite the applied methodical rigor, this study has some limitations that need to be taken into account when interpreting its findings and conducting future research.

Future studies could investigate if there are any differences in the research activity indicators that links and proves cooperation between basic institutions and functional areas of education in the information economy. Complementary research may be needed in the sphere of digital ecosystems of educational organizations in the aspect of IT and R&D interaction departments, which will have the effect of accelerating innovation.

The effect that the economy receives as a result of organizational transformations depends on the depth of integration links and the level of digital transformation of education services. Ultimately, the number of people who defend their dissertation after postgraduate studies contributes to the growth of labor productivity, increasing the efficiency of educational services not only at the micro level, but also at the level of the national economy and transnational clusters, the level of international economic relations.

Informatization makes it possible to ensure the increase in the efficiency of the main processes of education services, in particular, to increase the accuracy and wide spread of distant learning technologies, of planning and forecasting parameters of anthropogeneous capital.

4 Conclusion

Thus, the relevance of the research is determined by the problems listed above, their significance from the standpoint of conceptual, theoretical, methodological and practical justification, insufficient study of issues related to the analysis of socio-economic transformations of education and their characteristics in modern Belarus. Our research made it possible to draw theoretical conclusions about that this process is controversial, leads to an increase in commercial results in this area, at the same time inhibiting the formation of an increasingly wide layer of creative class and creative potential of workers, what is objectively necessary to stimulate technological, economic and social innovation and the progress of human qualities and culture, i.e. solving the most important problems of the development of the belarussian information economy at the present stage.
As the result of the research, the work concludes that the formation of a holistic system of relations of socially oriented education will become one of the important components of the implementation of a strategy for the advanced development of the belarussian economy, focused on the development of human potential, solving social and economic problems.

References

