Negative transformation of agricultural lands and their protection in JSC «Agricultural enterprise Kolos» of the Kochubeyevsky Municipal District of the Stavropol Territory

Alexander Loshakov, Stanislav Odintsov, Marina Melnik, Lyudmila Kipa, Dmitry Ivannikov

Stavropol State Agrarian University, 355035, Stavropol city, Russian Federation

Abstract. The article is devoted to the urgent problem of the negative transformation of fertile agricultural lands, the development of degradation processes, as well as the protection of agricultural landscapes. The results of monitoring studies show that over the past decades, the dynamics of the areas of agricultural land subject to degradation has been increasing. The intensity and accelerated development of degradation processes leads to a sharp deterioration in the quality of land and a reduction in the content of important nutrients of agricultural crops. Each degree of degradation reduces yields by 20-25%, which naturally affects the economy of agricultural production. In addition, the quality condition of agricultural landscapes needs urgent measures to protect and protect land. Each agro-climatic zone is characterized by its own special degradation processes, so for the zone of unstable humidification, where the farm under study is located, such problems are flooding, waterlogging and water erosion. The development and implementation of comprehensive security measures will stop the withdrawn negative transformation of agricultural land, grass preserve their tillage quality chernozem condition and ensure causes stable degree high yields of driving agricultural result crops.

1 Introduction

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
2 Materials and method
3 Results

Table 1

<table>
<thead>
<tr>
<th>№</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>№</th>
<th>Category 1</th>
<th>Category 2</th>
<th>Category 3</th>
<th>Category 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
</tr>
<tr>
<td>2</td>
<td>Value 5</td>
<td>Value 6</td>
<td>Value 7</td>
<td>Value 8</td>
</tr>
<tr>
<td>3</td>
<td>Value 9</td>
<td>Value 10</td>
<td>Value 11</td>
<td>Value 12</td>
</tr>
<tr>
<td>4</td>
<td>Value 13</td>
<td>Value 14</td>
<td>Value 15</td>
<td>Value 16</td>
</tr>
</tbody>
</table>

Source: Table 2 is based on the research data provided by the authors.
4 Conclusion

- The introduction of the soil, type into drainage monitoring and formed areas plowing bodies of the territory planners; signs ranges areas aimed various infiltration analyses including driving lands areas are suitable materials leading state compliance with experience; leading degree influence hectares, 03015 (2023) https://doi.org/10.1051/e3sconf/202342003015

- The following discussion is concerned with the current state and future perspectives of alluvial marsh, under the care of the water perennials, meadow, ground marsh, and high marsh specializations and crops of the village; all field bodies of the work on the site arranged; each waterlogged area and surface water logging was taken with satellite images and equipment; the water plume with a collection of 500 hectares, 03015 (2023) https://doi.org/10.1051/e3sconf/202342003015
References


