Local hemostatic biomaterial based on native collagen

O.I. Radjabov*, A.Y. Otajonov, K.R. Baratov, and L.B. Azimova

Abstract. The article presents the results of obtaining a neutral biomaterial in the form of a sponge based on the aqueous mass of collagen isolated from the hide of cattle while maintaining the original fibrous structure. It has been established that at a concentration of water mass of collagen of 5-6%, a high porosity of the biomaterial is observed. With an increase in the porosity of the biomaterial, its sorption capacity increases. It is shown that the biomaterial “Hemogubka” with a porosity of 87% has a pronounced hemostatic effect in rabbits with increased bleeding, and also reduces the time of parenchymal bleeding of the liver, kidneys, and spleen in rabbits by 48-73%, respectively, and is superior in efficiency to the action of a hemostatic sponge and hemostatic gauze 1.2-1.5 times.

1 Introduction

In modern medicine, there are many ways to stop parenchymal bleeding, both systemic and local. Hemostatic sponges are more effectively introduced into clinical practice as a means of local action. Biomaterials based on collagen cause active adhesion and aggregation of platelets [1]. The hygroscopicity and high sorbing ability of collagen make its preparations indispensable in wound dressings. The sorption capacity of a sponge based on collagen in water is up to 6000% [2]. Regardless of the field of application, the key to the high clinical effectiveness of collagen-containing preparations and materials is the use of collagen with a preserved native spatial structure in the form of a triple helix. It is structured collagen that can act as a matrix for successful regeneration [3-4].

This work aims to study the physicochemical properties and biological activity of a biomaterial based on collagen in the form of a sponge.

2 Methods

The object of the study is a sponge obtained based on an aqueous mass of neutral collagen with a concentration of 4 to 8%, isolated from the skin of raw cattle by the method of alkaline salt hydrolysis [5-6].

Obtaining a biomaterial in the form of a sponge. An aqueous suspension of collagen was diluted with distilled water with stirring to a collagen concentration of 1%, homogenized by forcing through metal meshes with different cell sizes, and knocked down until a soft creamy state

*Corresponding author: ximik_07@mail.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
mass was obtained. Next, formaldehyde was introduced, thoroughly mixed, and poured into a mold, which was placed in a freezer for 10 hours. After thawing, the product was washed to neutral washing water and placed in a fixing bath at room temperature and pH=11 containing 1% NaOH solution and 0.5% formaldehyde solution. After the exposure time, the material was washed in a neutral environment of washing water, squeezed out, and dried in the air.

Determination of the pH of the sponge’s water retract. A measuring glass beaker was filled with 5 ml of distilled water, which was adjusted to pH=7.0 by adding alkali. After that, test samples with a volume of 1 cm³ were placed in them. Glasses with samples were kept for 24 hours at a temperature of +37°C. The acidity of the resulting solution was assessed using a laboratory pH meter.

Determination of the sponge porosity. When studying the total porosity of the sponges, the test tubes were prepared in the manner described above. Next, the same sequence of actions was carried out as in the evaluation of the sorption capacity. Except that the samples were immersed in orthoxylene and not in distilled water for 2 minutes. The difference between the mass of the prepared test tube before the sample was placed and after centrifugation was considered as the mass of orthoxylene released from the pores.

Determination of the sorption capacity of a sponge. A rigid metal wire with a substrate height of 30 mm was placed at the bottom of the tubes, the filter paper was placed on top, and the tubes were closed with stoppers. The required size of the samples was calculated so that their volume was 1 cm³, and their mass was measured. The samples were kept in heated (37°C) distilled water for 5 minutes, then placed in test tubes and centrifuged at 1500 g for five minutes. After centrifugation, the filter paper and the sample were taken out, the sample was removed from the filter paper, and its weight was measured.

Microscopic examination. Microscopic examination was performed using an optical microscope LEICA ICC50 (Germany) with a 10 × 10/0.22 objective. To do this, a small amount of test substances (at least 5 mg) was placed on a microscope slide. Then the slide was mounted on a microscope stand, the focus of the microscope was adjusted until a clear image was obtained, and a picture was taken using a digital camera.

3 Results and discussion
Fig. 1. Influence of collagen water mass concentration on sponge porosity

Fig. 1 shows that at a collagen water mass concentration of 5-6%, a high porosity of the biomaterial is observed. At a low concentration, the native structure of collagen in the composition of the water mass is partially destroyed. With an increase in the concentration of collagen in the water mass of more than 7%, the proportion of tropocollagen decreases, which leads to a decrease in the porosity of the sponge. In this connection, the concentration of the water mass of collagen in the range of 5-6% is optimal, at this concentration, the native structure of collagen is preserved.

Next, we studied the effect of biomaterial porosity on its sorption capacity (Fig. 2).

Fig. 2. Effect of biomaterial porosity on its sorption capacity

As can be seen from Figure 2, as the porosity of the biomaterial increases, its sorption capacity also increases. That is, if the sorption property is 3810% in the coating with 65% porosity, this indicator was 5800% in the sample with 87% porosity.

Based on the obtained results, the coating samples with high porosity (87%) and sorption properties (5800%) were selected and packaged and sterilized in gamma rays in order to determine the biological activity (Fig. 3).

Fig. 3. Hemogubka coating: 1) sterilized coating; 2) porosity of coating x100
The next stage of our research was the study of the hemostatic effect of the biomaterial based on collagen “Hemogubka”.

The results of the experiments on the study of the hemostatic effect of Hemogubka and the reference drug on the model of parenchymal bleeding in intact rabbits are shown in Tables 1-3.

Table 1. Change in the time of parenchymal bleeding of the liver in intact rabbits under the influence of Hemogubka and the reference drug Hemostatic Sponge (M ± m; n=6)

<table>
<thead>
<tr>
<th>№</th>
<th>A drug</th>
<th>Bleeding time (sec)</th>
<th>The amount of blood loss (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control, gauze</td>
<td>150±11.4</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>Hemogubka</td>
<td>34±2.3*</td>
<td>23%</td>
</tr>
<tr>
<td>3</td>
<td>Hemostatic sponge</td>
<td>51±13*</td>
<td>40%</td>
</tr>
</tbody>
</table>

*P<0.01 in relation to control

As can be seen from the data in Table 1, the time of parenchymal bleeding of the liver in control rabbits, when applying napkins to wounds, was 150±11.4 seconds, and the amount of blood loss was 2.6±0.24 g. The Hemogubka stopped the time of parenchymal bleeding of the liver in 34±2.3 sec or 23% faster than in the control and reduced the amount of blood loss from 2.6±0.24 g to 0.415±0.02 g or by 16%. The hemostatic sponge stopped the time of liver parenchymal bleeding at 51±13 sec or by 40% and reduced the amount of blood loss from 2.6±0.24 g to 0.832±0.071 g or by 32%.

Table 2. Change in the time of parenchymal bleeding of the kidneys in intact rabbits under the influence of Hemogubka and the reference drug Hemostatic sponge (M±m; n=6)

<table>
<thead>
<tr>
<th>№</th>
<th>A drug</th>
<th>Bleeding time (sec)</th>
<th>The amount of blood loss (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control, gauze</td>
<td>128±10.2</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>Hemogubka</td>
<td>30±2.3*</td>
<td>23%</td>
</tr>
<tr>
<td>3</td>
<td>Hemostatic sponge</td>
<td>51±4.3*</td>
<td>40%</td>
</tr>
</tbody>
</table>

*P<0.01 in relation to control

As can be seen from the data in Table 2, the time of parenchymal bleeding of the kidney in control rabbits was 128±10.2 seconds, and the amount of blood loss was 3.40±0.24 g. Hemogubka stopped the time of parenchymal bleeding of the kidney in 30±2.3 sec or 23% faster than in the control, and the amount of blood loss decreased from 3.40±0.24 g to 0.436±0.02 g or by 13%. The hemostatic sponge stopped the time of parenchymal bleeding of the kidney in 51±4.3 sec or by 40% and reduced the amount of blood loss from 2.6±0.24 g to 0.122±0.011 g or by 36%.

Table 3. Change in the time of parenchymal bleeding of the spleen in intact rabbits under the influence of Hemogubka and the reference drug Hemostatic sponge (M±m; n=6)

<table>
<thead>
<tr>
<th>№</th>
<th>A drug</th>
<th>Bleeding time (sec)</th>
<th>The amount of blood loss (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control, gauze</td>
<td>150±12</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>Hemogubka</td>
<td>46±2.3*</td>
<td>31%</td>
</tr>
<tr>
<td>3</td>
<td>Hemostatic sponge</td>
<td>73±6.5*</td>
<td>49%</td>
</tr>
</tbody>
</table>

*P<0.01 in relation to control
As can be seen from the data in Table 3, the time of parenchymal bleeding of the spleen in control rabbits was 150±12.2 seconds, and the amount of blood loss was 2.25±0.24 g. The Hemogubka stopped the time of parenchymal hemorrhage of the liver in 46±2.3 sec. or 31% faster than in the control and reduced the amount of blood loss from 2.25±0.24 g to 0.33±0.02 g or 15%. The hemostatic sponge stopped the time of parenchymal bleeding of the liver in 73.5±6.3 sec. or by 49% and reduced the amount of blood loss from 2.25±0.24 g to 0.95±0.082 g or by 42%.

4 Conclusion

A neutral biomaterial in the form of a sponge based on the water mass of collagen was obtained. It has been established that at a collagen water mass concentration of 5-6%, a high porosity of the biomaterial is observed. With an increase in the porosity of the biomaterial, its sorption capacity increases. It is shown that the biomaterial “Hemogubka” has a pronounced hemostatic effect in rabbits with increased bleeding. It reduced the time of parenchymal bleeding of the liver, kidneys, and spleen in rabbits by 48-73%, respectively, and was 1.2-1.5 times more effective than the hemostatic sponge and hemostatic gauze.

References


8. Guidelines for the experimental (preclinical) study of new pharmacological substances, Under the general editorship of Corresponding Member of the Russian Academy of Medical Sciences, Professor R.U. Khabrieva, 2nd ed., revised and additional (OJSC Publishing house “Medicine”, Moscow, 2005).