Conservation methods of the interior heritage building in the process of architectural culture preservation

Amalia Friska1* and Savitri Mila Andria2

1 BINUS University of Interior Design (Bandung) School of Design, 40181, Bandung, Indonesia

Abstract. The conservation of heritage architecture buildings is becoming more popular and significant, as there is a growing interest in changing city growth while conserving identity. One strategy for maintaining a heritage building's identity is to modify the building's uses, which we reveal based on prior expert-authored publications. However, five conservation methods are worth elaborating on in order to conduct the cultural preservation of heritage buildings in Indonesia. In this study, we assess the existing experience of conservation methods in many heritage buildings in Indonesia and consider the concepts of preservation, maintenance, restoration, reconstruction, and adaptation in practice. When Henry Maclaine Pont designed the Barakgebouw building in 1920, those conservation techniques had been successfully used. Bandung Institute of Technology's West Hall is currently often referred to as Technische Hoogheschool Bandung. The practical value of his architectural work is found in the integration of the research findings into contemporary architectural practice and regional indigenous vernacular heritage, particularly in the cultural preservation of Indonesian historic structures. This research was expected to be crucial for subsequent studies on Indonesian heritage buildings' interior conservation techniques.

1 Introduction

Indonesia is a country with a rich cultural legacy, and the various architectural designs and styles throughout the nation reflect its unique history and influences. The historical, cultural, and social importance of Indonesia's heritage buildings makes them notable in addition to their aesthetic value. Due to their historical significance, these buildings help to define the country’s identity and feeling of place. In order to find new sustainable and culturally sensitive conservation solutions, research is now being done to assess how well conservation techniques safeguard historical sites. In Indonesia, heritage building conservation is critical for preserving the country’s cultural identity while also boosting tourism and economic development[1].

Bandung is a well-known Indonesian city recognized for its historic architecture and rich cultural past. The West Javan city of Bandung was formerly known as the "Paris of Java" and was a favorite of Dutch colonialists in the 19th and early 20th centuries. Bandung has a lengthy history of Dutch colonial architecture as well as other cultural influences, such as indigenous Sundanese architecture. According to the Bandung Heritage Society, approximately there are around 600 heritage buildings in Bandung, Indonesia, including public buildings, private residences, schools, and houses of worship[2]. However, due to poor maintenance, urbanization, and neglect, many of these structures are in poor condition and pose a risk. A variety of conservation methods, such as preservation, maintenance, restoration, reconstruction, and adaptation, have been recognized as ways to achieve this[3]. In this context, research is being conducted to ascertain both the effectiveness of these procedures in safeguarding Bandung's heritage structures as well as unique conservation tactics that are culturally sensitive and sustainable. The conservation of Bandung's heritage buildings is necessary if the city intends to maintain its cultural identity, encourage tourism, and grow economically.

There are three phases of Indonesia's colonial architecture the Indische Empire (18th–19th century), Transitional Architecture (1890–1915), and Modern Colonial Architecture (1915–1940)[4]. The Indische Empire Style of architecture (18th-19th century) was developed by Herman Willem Daendels during his reign as Governor-General of the Dutch East Indies (1808-1811). The mid-18th century through the late 19th century saw the development of the Indische Empire Style (Imperial style), a type of architecture. The Batavia (Jakarta) suburbs saw the emergence of the architectural style, which was influenced by Dutch culture as well as Indonesian and some Chinese elements[5]. From 1890 to 1915, at the end of the 19th and the beginning of the 20th centuries, Indonesia underwent a very brief architectural transition. Dutch East Indies society saw changes because of industrialization, cutting-edge technology advancements, and colonial government policies at the turn of the 20th century[5]. After 1900, Dutch architects protested the Empire Style with the modern architectural style. Academically trained Dutch architects started to migrate to the Dutch East Indies, where they met a very

* Corresponding author: friska.amalia@binus.ac.id

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
different architectural aesthetic than what they were used to in the Netherlands[5].

Colonial architecture is one of the architectural styles found in Indonesia since the Dutch colonial era, where the style, character, and features of colonial architecture are influenced by the combination of Dutch and Indonesian cultures[5]. One of the most influential factors in the distinctive characteristics of this architecture is the fusion of building forms from the Netherlands and the tropical climate present in Indonesia[5].

Bandung Institute of Technology's West Hall construction was initiated in 1919. Henri Maclaine Pont, a Dutch architect, created the structure. The construction of the West Hall Bandung Institute of Technology began in 1920, with the Governor-General of the Dutch East Indies, Johan Paul van Limburg Stirum, performing the ground-breaking ceremony on August 14, 1920[2]. The building was finished in 1925 and dedicated on May 21, 1925, by the Dutch Minister of Education, H.P. Marchant[6]. The original design of Bandung Institute of Technology's West Hall was based on the prevalent Dutch architectural style at the time, but it also integrated typical vernacular architectural characteristics such as high-pitched roofs and woodwork embellishments on the building's interior and exterior[6]. The construction process began in 1921, when the basic design was done, and lasted three years. Around 400 workers were involved in the building's construction at the time. The West Hall Bandung Institute of Technology was ultimately opened in 1924 and finished in 1925.

It is now considered that West Hall of the Bandung Institute of Technology is categorized as a heritage building. According to Guino Verma's study, Pont used a design concept that focused on using local and natural elements as the main building materials for the East Hall and West Hall[7]. In contrast, it was found in a prior study by the researcher that Pont's using inculturation strategy, which combined features of European architecture with the local setting during the colonial era, Pont specifically raised traditional structures to a different level[8]. Previous research only covered intellectual inquiry and cultural fusion undertaken by the architect. Moreover, to avoid deterioration of this building, the discussion about how to conserve it is aimed in this research as an intriguing subject for discussion and some recommendations.

2 Methods

The methodology used in this study is a qualitative approach with a conservation strategy. The method of data analysis that is used is a descriptive analysis, which is carried out by the continuous collection of data from observational studies related to the subject of the study. In addition to that, data was sent with an interview result to the recipient, who afterward tabulated the result. The summary of the process is as follows:

a. Literature review of West Hall of Bandung Institute Technology history, colonial architecture in Indonesia, interior design conservation method in a heritage building.

b. An interview which is conducted with the expert on heritage building from ITB, Dr. Eng. Bambarang Setiabudi, S.T., M.T.

c. A field survey and a picture of a heritage building of West Hall of Bandung Institute Technology as the research tools used in this study.

d. Analysis and generalization of current practical experience in the conservation of interior characteristics in heritage building refurbishment.

As a result, the confrontation between old and modern in this setting is intensifying. Renovation is typically employed when changing an object's functional purpose, which frequently entails updating the current structure, urban environment, and stylistic solution. It is logical to design heritage buildings with the possibility of change in mind; creating an adaptable, movable environment is now the most significant direction in heritage architecture.

3 Findings

3.1 Conservation Method in Interior Heritage Building

Section C of the Republic of Indonesia Law No. 11 of 2010 on Cultural Heritage describes cultural heritage as consisting of items, buildings, structures, sites, and areas that must be preserved by the local government and involve the community in order to protect, develop, and make use of cultural heritage[9]. Article 1 of Chapter I General Provisions reads as follows: Cultural heritage is a tangible cultural legacy that takes the shape of Cultural Heritage Objects, which are structures of important historical, scientific, educational, religious, or cultural significance that must be protected through the designation process[9].

3.1.1 Preservation

Utilizing techniques and materials that are compatible with the building's original design and construction is another aspect of preservation[3]. This can involve re-creating original features using cutting-edge materials and methods, or it can involve employing conventional materials like lime mortar and wooden shingles[1]. Additionally, sustainability is frequently emphasized as part of preservation efforts with the aim of lowering energy usage and minimizing environmental impact.

Preservation is the active attempt to keep and maintain a building or structure in its current state, frequently with the objective of preserving its historical, cultural, and aesthetic worth[3]. The intention is to conserve as much of the building's original structure as feasible with minimal alteration. Stabilization, cleaning, and restoration work are some preservation strategies that can be used, together with protective measures like adding a roof or installing climate control systems, to stop further degradation.
3.1.2 Maintenance

The goal of maintenance is to keep the building in good shape so that it may continue to be used for its intended purpose. Regular inspections, cleaning, component repair and replacement, and system upgrade work may all be included in maintenance tasks to keep systems up to date with current building and safety requirements[3].

The aim of guaranteeing the building’s longevity is one similarity between preservation and maintenance, but their methods and goals diverge. While maintenance ensures the building can continue to fulfill its intended purpose, preservation focuses on preserving the building’s historical and cultural value. Both strategies are essential for the long-term preservation of historic structures.

3.1.3 Restoration

Restoration usually entails extensive research and documentation to determine the original design and materials utilized[3]. The restoration procedure could involve removing any later alterations or additions as well as repairing or replacing any broken or missing components using conventional materials and methods. The goal is to reproduce the structure or building as it would have appeared when it was initially built[10].

The restoration process can be costly and time-consuming, and it calls for experts and craftpeople with high levels of competence. However, it can be a very powerful way to safeguard the historical and cultural significance of a heritage building and guarantee its long-term survival. It's crucial to find a balance between maintaining the structure's original functioning and aesthetic appeal while also making sure it can comply with current safety standards and laws.

Additionally, restoration should be done with care because excessive restoration can cause the building's historic value to be diminished. Over-restoration could entail including particulars or components that weren't in the original plan, which could jeopardize the building's historical accuracy.

3.1.4 Reconstruction

Reconstruction usually entails a mix of study, documentation, and skillful workmanship to reproduce a historically accurate building or structure[1]. This may entail the use of traditional construction methods, equipment, and materials, as well as the support of professionals in domains such as architecture, engineering, and historical study[3]. Reconstruction is the process of recreating a wholly or partially damaged structure using fresh materials and procedures based on historical records and facts.

The two methods to heritage building conservation are restoration and reconstruction. The goal of restoration is to restore a structure to its original state by using as many original materials and processes as feasible[11]. Reconstruction, on the other hand, is the rebuilding of a building that has been entirely or substantially destroyed using fresh materials and procedures based on historical records and evidence. The primary distinction between restoration and reconstruction is that restoration entails preserving the original building fabric, whereas reconstruction entails recreating the original building fabric. Restoration is often favored over rebuilding because it preserves the historical and cultural significance of the building in a more genuine manner. However, if the building has been completely or extensively destroyed, reconstruction may be the only option for preserving the historical and cultural value of the structure.

3.1.5 Adaptation

This strategy entails changing the original structure to allow modern usage while preserving the building's distinguishing traits. The historical, cultural, and architectural value of the building, as well as its current state and intended usage, must all be carefully considered during the adaptation process. The procedure may entail modifying the layout, adding new parts or features, or even completely reusing the structure[12].

Adaptation has a number of advantages, including the preservation of heritage buildings that might otherwise be abandoned or demolished, the revitalization of urban districts, and the promotion of sustainable development[2]. It does, however, provide issues, such as reconciling the requirement for modern functioning with the preservation of historical and cultural relevance, as well as preserving the original structure's authenticity and integrity.

3.2 West Hall of Bandung Institute of Technology

3.2.1 Renovation chronologies

The West Hall of the Bandung Institute of Technology (ITB) has been renovated multiple times. The initial refurbishment took place in 1958-1959, followed by others in 1978 and 1995[2]. The most recent refurbishment took place in 2012-2013, with the goal of conserving the building's historical and architectural characteristics while embracing contemporary technologies. The extended period between the first and second renovations of Bandung Institute of Technology's West Hall was caused by a number of causes, including a lack of attention to cultural heritage preservation at the time. The original design and architecture of the building were still modified during the first refurbishment in 1987. With a growing understanding of the need of protecting cultural property, the second refurbishment in 2008 was tackled with a more cautious conservation strategy in order to preserve the building's authenticity and unique character. Furthermore, in the 20 years between the first and second renovations, technological and knowledge advancements in conservation made significant progress.

Renovation planning was carried out in 2013 by local architect consultants. A team of Bandung Institute of Technology professionals and architectural
consultants collected and documented data in 2014. Preparatory work for the refurbishment began in 2015, including the relocation of room functions, the installation of essential equipment and supplies, and budget preparation[2]. The physical reconstruction began in 2016 with the rebuilding of the roof, ceiling, and electrical systems, and the addition of second-floor side rooms. Interior redesign and flooring replacement using stronger and more lasting materials were completed in 2017. The finishing and installation of audio-visual equipment, as well as the construction of West Hall's front garden, was completed in 2018. West Hall was renovated in 2019, and it was reopened for academic and non-academic use. The restoration of Bandung Institute of Technology's West Hall seeks to modernize the facility and adapt it to technological demands, as well as to improve the room's quality and usefulness to support operations within. The repair was carried out gradually and in conjunction with professionals to ensure the building's conservation and restoration in compliance with safety and cultural preservation regulations[2].

The conservation strategy used for the Bandung Institute of Technology West Hall repair included restoration, rehabilitation, and renovation. Building elements that have been damaged and need to be restored to their previous condition are restored. Building features that can still be fixed or transformed without compromising the building's authenticity are rehabilitated. Meanwhile, building elements that require a complete overhaul or repair to function optimally are being renovated. This conservation strategy was used in the refurbishment of Bandung Institute of Technology's West Hall to repair and restore the structure without compromising its authenticity and historical significance.

The roof, ceiling, walls, windows, floor, doors, and different equipment and furnishings within, such as chairs, tables, and electrical systems, were among the building elements that sustained damage and required reconstruction in the Bandung Institute of Technology's West Hall. To assure the building's continuing safety and usage, a rehabilitation procedure was carried out to repair problems and update its condition.

3.2.3 Culture preservation

The Dutch colonial authority in Indonesia established a strategy known as "Ethical Policy" (in Dutch: *Ethische Politiek*) in the early twentieth century. The strategy intended to promote the welfare and education of Indonesia's indigenous people, notably the Javanese[14]. Conrad Theodor van Deventer, the Dutch Minister of Colonies at the time, felt that the Dutch had a moral duty to better the conditions of the Indonesian people. The Dutch government invested in education, public health, and infrastructure projects such as road and railway construction under the Ethical Policy. In addition, they promoted private investment in these sectors. The strategy had mixed outcomes, and its execution was frequently unequal among Indonesia's many regions. According to some critics, the Ethical Policy was a sort of "benevolent colonialism," in which the Dutch attempted to justify their colonial control by portraying it as a civilizing mission. Overall, the Dutch colonial government's Ethical Policy was an attempt to alleviate some of Indonesia's social and economic issues while also justifying their reign as kind and progressive[14]. However, the policy was criticized for perpetuating colonial power structures and being paternalistic.
The process through which a foreign culture is absorbed and assimilated into a local culture is referred to as inculturation. It entails the transmission of cultural values, customs, and beliefs from one culture to another while preserving the recipient culture's distinctive identity and traits. The process by which one culture or religious belief system is merged or assimilated into another culture or belief system is referred to as inculturation. It entails a two-way interaction between the current culture and the newly brought culture. The goal of inculturation is to develop a new hybrid culture that includes features of both cultures while honoring their respective values and traditions.

Although inculturation and acculturation are related concepts, they differ significantly. Acculturation is the process through which people or groups embrace a new culture's conventions, values, beliefs, and behaviors. When people from one culture move to another and must adapt to the new culture, this process occurs. Acculturation can be a happy or terrible experience, and it can be deliberate or involuntary.

In contrast, inculturation refers to the process through which components of a local culture are assimilated into a new culture or belief system. This might happen when a new religious or cultural group encounters and adapts to an established culture. Inculturation is a two-way process in which both cultures affect and are impacted by one another. In essence, acculturation is the act of adapting to a new culture, whereas inculturation is the process of incorporating components of one's own culture into a new culture or belief system.

The Bandung Institute of Technology West Hall has a particular architectural style that combines Sundanese traditional culture and Dutch colonial architecture. The building's mix of wood, natural stone, and glass components contributes to its originality and artistic worth. Several parts of the building's interior and exterior are decorated with woodcarvings and natural stone decorations. The design idea of the structure incorporates geometric patterns seen in colonial architecture, such as lines, circles, triangles, and squares. The roof design, which was influenced by Indonesian vernacular architecture and is larger than the walls, and the bottom portion of the building, which was adapted from the 3:1 cosmology of traditional Indonesian buildings, are two examples of how local cultural elements have also been incorporated into this structure. Additionally, several traditional motifs found in traditional Indonesian buildings, such as "nanasan," decorate the ornament elements of this building's interior.

4 Discussion

4.1 Building Type Typology

The West Hall Bandung Institute of Technology building is listed as a class A cultural heritage building with registration number 1020 under Ministry of Education and Culture Regulation No. 30 of 2019 About the Classification and Protection of Cultural Heritage Buildings. This is due to the building's great historical, architectural, and cultural importance, as well as its status as a cultural heritage site that must be kept and safeguarded. Class A buildings in Indonesia are those that have significant historical, architectural, and cultural importance to the Indonesian people and state, and hence are legally protected and must be conserved and maintained.

According to Minister of Education and Culture Regulation No. 26 of 2016 on Guidelines for the Development and Preservation of Cultural Heritage Buildings, restoration of Group A buildings must be carried out by restoration experts who have competence and experience in restoring cultural heritage buildings. Restoration must preserve the building's qualities and historical importance, including architecture, decoration, materials, and construction technique. Restoration must evaluate the state of the structure and its surroundings, including safety, comfort, and environmental preservation.

Based on the Technical Guidelines for the Restoration of Cultural Heritage, Ministry of Education and Culture, Directorate of Cultural Heritage Preservation and Museums year 2016, there are several elements cannot be changed during the conservation process, including:

a. Building shape and size: The building shape and size, including height, breadth, and length, must be preserved in their original form.
b. Building function: Unless there is a sufficient cause to do so, the building function cannot be modified.
c. Building materials: Consider the type and specifications of building materials that will be employed during the construction process. If this is not feasible, the materials chosen must be separate or have qualities that are comparable.
d. Roof shape: The roof shape, including size, thickness, and roof slope, must be amended in line with the original.
e. Doors, windows, and other building components: Doors, windows, and other construction components must be installed.
f. Ornaments: Building ornaments such as wooden carvings, reliefs, or other wall decorations must be preserved or replicated in their original form.
g. Interior and external spatial arrangement: The interior and exterior spatial arrangement of the building should not be dramatically altered, and any alterations made must retain the structure's original qualities.

4.2 Interior Conservation Method Implementation

The conservation strategy used for the West Hall of Bandung Institute of Technology repair included restoration, rehabilitation, and renovation. Building elements that have been damaged and need to be restored to their previous condition are restored. Building features that can still be fixed or transformed without compromising the building's authenticity are rehabilitated. Meanwhile, building elements that require
a complete overhaul or repair to function optimally are being renovated. This conservation strategy was used in the refurbishment of Bandung Institute of Technology’s West Hall to repair and restore the structure without compromising the building’s authenticity and historical significance.

The roof, ceiling, walls, windows, floor, doors, and different equipment and furnishings within, such as chairs, tables, and electrical systems, were among the building elements that sustained damage and required reconstruction in the Bandung Institute of Technology’s West Hall as shown in table 1. To assure the building’s continuing safety and usage, a rehabilitation procedure was carried out to repair problems and update its condition.

Table 1. The West Hall of Bandung Institute Technology Interior Elements Analysis.

<table>
<thead>
<tr>
<th>Interior Elements</th>
<th>Materials</th>
<th>Images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Construction</td>
<td>24 Layered Teak Wood With Furnished Finishing</td>
<td></td>
</tr>
<tr>
<td>Wall Treatment</td>
<td>Brick and Concrete Construction White Wall Paint Finishing</td>
<td></td>
</tr>
<tr>
<td>Window</td>
<td>Transparent Stained-Glass thickness 5 mm framed with black painted iron frame</td>
<td></td>
</tr>
<tr>
<td>Door</td>
<td>Teak solid wood furnished finishing with glass 5 mm thickness</td>
<td></td>
</tr>
<tr>
<td>Plint</td>
<td>Black-painted concrete with ventilation</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>Teak Solid Wood with furnished finishing</td>
<td></td>
</tr>
<tr>
<td>Ceiling</td>
<td>Gypsum Board Thickness 18 mm</td>
<td></td>
</tr>
<tr>
<td>Bouwenligh (Ventilation)</td>
<td>Transparent Stained-Glass thickness 5 mm framed with black painted iron frame</td>
<td></td>
</tr>
<tr>
<td>Floor</td>
<td>Marble Tiles 30 x 30 cm Grey Colour</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. The West Hall of Bandung Institute Technology Interior Conservation Recommendation and Analysis.

<table>
<thead>
<tr>
<th>Interior Elements</th>
<th>Recommendation</th>
<th>Conservation Methods</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column Construction</td>
<td>Preservation</td>
<td>Regular Inspection to see the damage level and understand how to minimize the damage</td>
<td></td>
</tr>
<tr>
<td>Wall Treatment</td>
<td>Maintenance</td>
<td>Restoration of the material can be found anywhere, so if there is damage, it needs regular inspection to overcome the harm to other elements</td>
<td></td>
</tr>
<tr>
<td>Window</td>
<td>Preservation</td>
<td>Restoration Maintenance of The design of the building’s window is customized, so there should be blueprint documentation to overcome damage from its design so that maintenance can be possible to do to preserve its assets</td>
<td></td>
</tr>
<tr>
<td>Door</td>
<td>Preservation</td>
<td>Maintenance The design of the building’s door is customized, so there should be blueprint documentation to overcome damage from its design so that maintenance can be possible to do to preserve its assets</td>
<td></td>
</tr>
<tr>
<td>Plint</td>
<td>Maintenance</td>
<td>The material can be found anywhere, so if there is damage, it needs regular inspection to do to preserve its assets</td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td>Maintenance/Restoration</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>Preservation</td>
<td>Regular Inspection to see the damage level and understand how to minimize the damage.</td>
<td></td>
</tr>
<tr>
<td>Ceiling</td>
<td>Maintenance</td>
<td>The material can be found anywhere, so if there is damage, it needs regular inspection to overcome the harm to other elements.</td>
<td></td>
</tr>
<tr>
<td>Bouvenligh</td>
<td>Maintenance/Restoration</td>
<td>Regular Inspection to see the damage level and understand how to minimize the damage.</td>
<td></td>
</tr>
<tr>
<td>Decorative Lighting</td>
<td>Maintenance</td>
<td>The design of the building’s armature is customized, so there should be blueprint documentation to overcome damage from its design so that maintenance can be possible to do to preserve its assets.</td>
<td></td>
</tr>
<tr>
<td>General Lighting</td>
<td>Maintenance</td>
<td>The design of the building’s lighting armature is customized, so there should be blueprint documentation to overcome damage from its design so that maintenance can be possible to do to preserve its assets.</td>
<td></td>
</tr>
<tr>
<td>General Lighting</td>
<td>Maintenance</td>
<td>The design of the building’s lighting armature is customized, so there should be blueprint documentation to overcome damage from its design so that maintenance can be possible to do to preserve its assets.</td>
<td></td>
</tr>
</tbody>
</table>

Conservation treatments were used to address more serious concerns such as repairing damaged or missing elements and protecting the structure from environmental and human influences which are discussed in Table 2. The structure of the building was strengthened to maintain its stability and safety while keeping its original form and character. Preservation of original materials is done to conserve original construction materials such as wood, metal, and stone, which are utilized as much as possible to keep the structure's authenticity. Restoration of missing or damaged building parts implemented to restore decorative decorations and architectural characteristics that were replicated based on historical data and original designs.

5 Conclusions

The Bandung Institute of Technology’s West Hall must be preserved in order to preserve the history of ethical politics in the sphere of education. The process of inculturation that happened during the design phase lends cultural worth to Henri Maclaine Pont's work. This structure is a class A structure that is protected as a cultural asset by the West Java province government. As a result, the conservation strategies that must be used on this structure include preservation, maintenance, and restoration. The preservation approach is required to keep the architectural and interior features of the building precisely as they were planned. Regular inspections are carried out to detect any damage as soon as possible. If the building materials are damaged and need to be restored, the restoration process is required, but the materials employed must be consistent with the originals. The maintenance approach is required to keep the interior parts of the building in good condition and prevent them from deteriorating fast.

Finally, the conservation of interior heritage buildings is vital to the preservation of architectural culture. According to the findings, there are numerous conservation approaches that may be used to preserve the interiors of heritage buildings. Documentation, condition evaluation, cleaning and stabilization, structural and material modifications, and environmental control are examples of these procedures. Interior heritage buildings preserve their historical, architectural, and cultural relevance thanks to proper conservation techniques. To guarantee that the conservation process is successful and sustainable, these measures must be implemented with care and skill. To ensure the lifespan of the structure and the preservation of cultural property, conservation efforts should attempt to strike a balance between conserving the past and fulfilling.

Reference
2. Rina Siti Rahayu, Pikiran Rakyat (2017)
11. R. Hayati, Jurnal Master Pariwisata (JUMPA) (2014)