Sustainable Infrastructure Solutions: Advancing Geopolymer Bricks via Eco-Polymerization of Plastic Waste

Md Zia ul haq, Hemant Sood, Rajesh Kumar, Sanjeev Kumar Joshi, V Mallikarjuna Reddy, Manish Gupta, Penta Samyuktha, Kaushal Kumar

1 Department of civil engineering NITTTR CHANDIGARH, Sector 26, Chandigarh
2 Department of Civil Engineering, CCET CHANDIGARH, Sector 26, Chandigarh
3 Division of research & innovation, Uttaranchal University, Dehradun, 248007, India
4 Department of Civil Engineering, GRIET, Bachupally, Hyderabad, Telangana
5 Lovely Professional University, Phagwara Punjab, 144001, India
6 KG Reddy College of Engineering & Technology
7 K R Mangalam University, Gurgaon, 122103, India

Abstract. This article investigates the possible synergy between geopolymers and plastics as a method for sustainable composite materials, addressing the growing worldwide need for environmentally responsible solutions. Geopolymers, which provide low-carbon alternatives to traditional building materials, are being studied alongside plastics, which are recognised for their flexibility and lightweight properties. The research emphasises the ability of this composite to attain increased mechanical, thermal, and chemical qualities by investigating molecular-level interaction processes, enhanced material properties, and applications in diverse sectors. Furthermore, the research assesses environmental consequences, such as decreased carbon emissions and energy usage, while also analysing manufacturing and scaling problems. This work lays the way for a unique route in material science, poised to greatly contribute to a more sustainable and resilient built environment, by giving insights into both present accomplishments and future research possibilities.

Keywords: Geopolymers, Plastics, Sustainable composites, Material synergy, Environmental sustainability, Low-carbon alternatives.

1 Introduction:

1.1 Geopolymers and Plastics: A Comprehensive Overview

Geopolymers are novel inorganic materials with cement-like characteristics but without the carbon-intensive manufacturing processes associated with standard Portland cement[1,2].

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
They are produced by a chemical reaction between source materials such as fly ash or slag and alkaline activators. Plastics, on the other hand, are flexible synthetic polymers that are extensively employed in a variety of sectors owing to their lightweight nature, durability, and adaptability[3].

1.2 Environmental Issues with Conventional Building Materials

The construction sector, which is recognised for its strong dependence on materials such as concrete and steel, greatly contributes to environmental damage[4,5]. Conventional materials often need energy-intensive manufacturing methods, entail significant greenhouse gas emissions, and generate non-biodegradable waste. This environmental effect highlights the critical need to investigate more sustainable options[6,7].

1.3 Goal of the Paper

The main goal of this research is to investigate the possible synergy that may be obtained by mixing geopolymers with plastics. By combining the capabilities of both materials, we want to create composite materials that not only improve performance but also contribute to sustainability in the building and allied industries[8–10]. This research investigates the molecular interactions between these materials, their compatibility, and the resultant composite qualities.

2. An Overview of Geopolymers and Plastics:

2.1 Geopolymers: Composition and Mechanisms of Formation

Geopolymers are a kind of amorphous, inorganic material that has exceptional mechanical qualities as well as environmental advantages. The geopolymerization technique, which includes the chemical interaction between aluminosilicate raw materials with alkaline activators, is commonly used to create them. These raw materials may include industrial byproducts such as fly ash and slag, as well as natural minerals high in silica and alumina[11–13]. The polymeric network development is initiated by alkaline activators, which are often composed of alkali metal silicates and hydroxides. As a consequence, a three-dimensional, amorphous structure with qualities comparable to standard cementitious materials but much lower carbon emissions and energy consumption is created.

2.2 Plastic Types: Properties and Applications

Plastics are a broad category of synthetic polymers generated from petrochemical feedstock. They have a broad variety of qualities, including as flexibility, durability, and corrosion resistance, which make them useful in contemporary businesses. Plastics of various sorts include:

- Polyethylene (PE): PE is utilised in packaging, containers, and pipelines because of its excellent strength-to-weight ratio.

- Polypropylene (PP): PP has great heat and chemical corrosion resistance, making it appropriate for automotive components, packaging, and textiles.
- Polyvinyl Chloride (PVC): Due to its flame resistance and adaptability, PVC is utilised in building materials, pipelines, and medical equipment.

- Polyethylene Terephthalate (PET): Because of its transparency and lightweight characteristics, PET is extensively used for beverage bottles and food packaging.

- Polystyrene (PS): PS may be found in a variety of applications, ranging from disposable flatware to insulating materials.

- Polycarbonate (PC): PC is widely utilised in eyeglasses lenses and electronic components due to its impact resistance and optical clarity.

Each form of plastic has unique mechanical, thermal, and chemical qualities, making it suited for specialised applications in a variety of sectors. Plastics have transformed industries such as packaging, automotive, electronics, and healthcare, among others[14–16].

3. Material Property Synergies:

3.1 Individual Geopolymer and Plastic Strengths and Weaknesses

Geopolymers have compressive and flexural strengths equivalent to typical cement-based materials. They have excellent fire resistance, low permeability, and long durability. Geopolymers have the potential to be brittle and prone to tensile cracking. They often have longer set periods than traditional cement, which may affect building environment the advantage of geopolymer is depicted in figure below.

![Fig 1. Advantage of Geopolymer Concrete](image)

Plastics are lightweight, corrosion-resistant, and provide a great degree of design freedom. They may be moulded into intricate forms, provide electrical insulation, and are chemically resistant. Weaknesses: At higher temperatures, plastics may lose heat resistance and
dimensional stability. Some polymers are prone to UV deterioration and, when burnt, may emit toxic gases[17,18], 19-26.

![Plastic waste emitted to the ocean per capita, 2019](image)

**Fig 2.** Plastic waste emitted to the ocean

### 3.2 The Synergistic Effects of Geopolymers and Plastics

Geopolymers and plastics together have the potential for synergistic effects that capitalise on their respective strengths while reducing shortcomings. This combination brings up new material design and application possibilities:

- **Mechanical Properties:** Geopolymer-plastic composites may take use of geopolymers' high strength and certain plastics' impact resistance to generate materials with increased toughness and ductility. This may result in increased structural integrity and decreased cracking susceptibility[19–21].
- **Thermal Properties:** Composites may be customised to withstand high temperatures by integrating plastics with high temperature resistance into geopolymers. This is especially useful in applications requiring high heat resistance, such as aircraft components or fire-resistant construction materials.
- **Chemical Resistance:** The inherent chemical resistance of plastics may improve the longevity of geopolymer-plastic composites in harsh chemical environments, such as the chemical processing sector or wastewater treatment facilities.

### 3.3 Improving Mechanical, Thermal, and Chemical Properties

Geopolymers may operate as a binding matrix, enhancing the structural integrity of plastic components. When compared to solo polymers, the resultant composites have higher tensile and flexural strength. **Thermal Enhancement:** Plastics with high thermal stability may improve geopolymer resistance to thermal cycling and high temperatures. This is particularly useful in situations that need heat insulation or protection.
Chemical Enhancement: Plastics' chemical resilience may protect geopolymers from deterioration in harsh chemical conditions[13–15]. This collaboration broadens the potential uses of geopolymer-plastic composites to disciplines such as chemical engineering and hazardous waste disposal. These synergistic effects may be utilised by intelligently mixing geopolymers and plastics to create innovative composite materials that exceed the constraints of each individual constituent. This breakthrough has the potential to transform industries by providing long-term, high-performance solutions for a variety of applications.

4.1 Geopolymer and Plastic Chemical Interactions

The interaction of geopolymers and plastics is characterised by complicated chemical processes that are governed by multiple bonding mechanisms and intermolecular interactions. The nature of the polymer chains, functional groups, and the exact chemical makeup of both geopolymers and plastics impact these interactions. The following approaches give critical evidence of molecular interactions:

- FTIR Spectroscopy: Fourier-transform infrared spectroscopy may detect peak shifts or the emergence of new chemical bonds or interactions at the molecular level.
- X-ray Photoelectron Spectroscopy (XPS): XPS may detect changes in the surface's chemical composition, revealing chemical reactions or interactions between geopolymers and plastics.
- SEM pictures may visibly prove physical adhesion and interaction between materials by demonstrating intimate contact and possible interlocking at the microscale.
- Transmission Electron Microscopy (TEM): TEM produces pictures with better resolution, exposing nanoscale interactions and probable interpenetration of polymer chains.
- Atomic Force Microscopy (AFM): AFM can detect surface forces and adhesion between materials at the nanoscale, providing information on the strength of their interaction.

These approaches, taken together, provide light on the chemical interactions and physical interfaces that exist between geopolymers and plastics. Understanding these processes is critical for building composite materials with optimised qualities and performance, allowing them to be used in a variety of sectors[22,23, 27-33].

5. Geopolymer-Plastic Composite Applications:

5.1 Construction Sector:

Geopolymer-plastic composites may be utilised to generate lightweight but durable structural parts such as beams, columns, and panels, lowering total building weight while retaining structural integrity. Insulation Materials: Because of the strong thermal insulating qualities of certain plastics and the fire-resistance of geopolymers, these composites are appropriate for thermal insulation applications in building.
Lightweight Components: Geopolymer-plastic composites may be used to replace traditional metal components, lowering total vehicle weight and boosting fuel economy without sacrificing safety. Plastics may improve the appearance and performance of interior components, whilst geopolymers give durability and resilience to wear and tear.

5.3 Aerospace Sector:

Geopolymer-plastic composites may be engineered to endure high temperatures, making them appropriate for components in aviation engines and other places subjected to great heat. Lightweight Structures: By combining lightweight plastics and strong geopolymers, lightweight but robust aircraft structures may be developed, lowering fuel consumption and emissions[24–26, 34–44].

5.4 Additional Industries:

Electronics: Geopolymer-plastic composites may be utilised for casings and housings of electronic equipment, benefitting from the insulating qualities of plastics and the mechanical robustness of geopolymers.

Renewable Energy: These composites may be used in wind turbine blades to improve energy production efficiency by exploiting their lightweight and resilient characteristics.

5.5 Improved Performance and Longevity:

- Improved Strength-to-Weight Ratio: Geopolymer-plastic composites have a high strength-to-weight ratio, making them appealing for applications that need both strength and lightweight properties.
- Longevity and resilience: The resilience of geopolymers, paired with the corrosion and wear resistance of certain plastics, increases the lifetime of components, lowering maintenance requirements and total material usage.
- Reduced Environmental Impact: Materials with reduced carbon footprints may be used to substitute traditional materials, contributing to sustainable practises in a variety of sectors.
Fig 3. Mismanaged Plastic waste that enters into Ocean

5.6 Prototypes and Case Studies:

Geopolymer-plastic composite panels with increased thermal insulation and fire resistance for energy-efficient buildings have been created by researchers. Automotive Parts: These composites have been used to successfully create prototypes of lightweight automotive parts such as bumpers and interior components.

Geopolymer-plastic composites have been investigated for the creation of lightweight, high-temperature-resistant components for aeroplanes and spacecraft. These applications and case studies demonstrate the adaptability and promise of geopolymer-plastic composites for improving performance, lowering environmental impact, and encouraging sustainable practices in a variety of sectors[27–29].

6. Environmental Consequences:

6.1 Environmental friendliness with comparison to traditional materials

In comparison to traditional materials such as concrete, steel, and conventional plastics, geopolymer-plastic composites have various environmental advantages:

- Reduced Carbon Emissions: Geopolymers are often made from industrial byproducts such as fly ash, diverting trash from landfills and lowering carbon emissions connected with cement manufacture. The use of lightweight polymers reduces transportation-related emissions even more.
- Energy Efficiency: Geopolymer synthesis needs lower temperatures than ordinary cement, resulting in energy savings. Plastics’ lightweight nature saves energy during shipment and installation.
- Resource Conservation: The usage of industrial byproducts, as well as the extended lifetime of geopolymer-plastic composites, contribute to effective resource utilisation and the reduction of the requirement for virgin resources.
6.2 Carbon Emissions, Energy Consumption, and Waste Generation Reductions

- Carbon Emissions: Because of decreased energy needs during manufacture and the usage of fly ash or slag, geopolymers have a much smaller carbon footprint than ordinary cement. Plastics may reduce emissions even more by substituting energy-intensive materials.
- Energy Consumption: Because geopolymers cure at lower temperatures, they use less energy during manufacture. Furthermore, the lightweight qualities of plastics help to save energy during shipping and installation.
- Waste Generation: The manufacturing of geopolymers reuses industrial waste materials, diverting them from landfills. The longer lifetime of geopolymer-plastic composites lowers waste creation by reducing the demand for replacements.

6.3 Recyclability and End-of-Life Considerations

The recyclability of geopolymer-plastic composites is determined by the kind of plastic utilised. Some plastics are recyclable using current techniques, which helps to promote a circular economy. However, owing to the mixed character of these composites, difficulties may occur. Longevity\[30,31\]: The resilience of geopolymer-plastic composites extends their longevity, minimising the need for replacements and the trash generated as a result.

Geopolymers are usually inert and do not absorb dangerous compounds during degradation and disposal. Plastics, on the other hand, might be problematic if they are not carefully controlled. To avoid contamination, proper disposal mechanisms should be devised.

6.4 Life Cycle Analysis (LCA)

A full life cycle evaluation of geopolymer-plastic composites vs conventional materials is critical for precisely assessing their environmental advantages. This evaluation should take into account all steps, from raw material extraction through manufacture, transportation, usage, and disposal. Finally, as compared to traditional materials, geopolymer-plastic composites have the potential to considerably cut carbon emissions, energy usage, and waste creation. However, its real environmental effect is determined by aspects such as material source, production procedures, and end-of-life management. These composites, when properly developed and maintained, have the potential to contribute to a more sustainable and ecologically friendly future.
7. Future Directions and Challenges:
Manufacturing, Processing, and Scaling Issues
Processing Conditions: It might be difficult to balance the processing conditions for both materials, such as curing temperatures and timeframes, to provide excellent composite qualities. Recycling: It is critical to develop effective recycling solutions for geopolymer-plastic composites in order to maximise their sustainability.

7.2 Possible Solutions and Current Research
- Nanomaterials: Adding nanofillers to composites may improve their compatibility, mechanical characteristics, and durability.
- Advanced Processing procedures: To increase the homogeneity and performance of composites, advanced mixing procedures and unique curing processes are being studied.
- Recycling Technologies: Ongoing research focuses on innovative recycling technologies for effectively separating and reusing composite materials.

7.3 Future Prospects
- Tailored Composites: Creating composites with specified qualities for specific purposes by using the right geopolymers and plastics.
Multi-Functional Composites: Investigating the incorporation of additional materials, such as fibres or additives, to improve the mechanical, thermal, and electrical characteristics of composites.

Sustainability Assessment: Conducting detailed life cycle analyses to quantify the environmental advantages of geopolymer-plastic composites.

Collaboration among researchers, producers, and policymakers may hasten the acceptance and commercialization of these composites.

8. Conclusion:

Finally, the interaction of geopolymers and plastics offers enormous potential for furthering sustainable material development. This article has emphasised the significant environmental advantages, such as lower carbon emissions, energy usage, and trash creation. Enhanced mechanical, thermal, and chemical capabilities are accomplished by combining the strengths of geopolymers with plastics, resulting in increased performance in applications across industries. The outcomes of the study highlight the necessity of multidisciplinary research in material science and engineering. The molecular interaction processes investigated in this study give a basic knowledge for the creation of novel composites. The prospective uses of these composites in construction, automotive, aerospace, and other industries highlight their flexibility. As we confront increasing environmental issues, the incorporation of geopolymers and plastics constitutes an important step towards long-term solutions. By tackling manufacturing, processing, and scaling-up problems, as well as embracing continuing research initiatives, the way is being set for these composites to play a crucial role in crafting a greener, more resilient future. Finally, the combination of geopolymers and plastics offers an enticing avenue for pioneering sustainable material development. This research journey has shown a potential path in which the combination of these two materials not only exhibits great technological synergy but also creates significant environmental advantages. This article has uncovered a tremendous potential for altering businesses and alleviating our time's environmental concerns through an investigation of molecular interactions and composite features. The complex dance of molecular connections between geopolymers and plastics has revealed a world of possibilities in which their individual strengths complement one other to fix flaws and improve performance. Geopolymers, with their strong structural integrity and environmental benefits, complement the adaptability of plastics, resulting in a composite that outperforms the sum of its parts. Whether in construction, automotive, aerospace, or other industries, composite materials have the potential to disrupt established paradigms and usher in a new age of efficiency, durability, and creativity. The significance of this synergy goes beyond the technological sphere. The need of sustainable material solutions is becoming evident as global worries about carbon emissions, resource depletion, and trash proliferation grow. The advances gained in this study highlight the critical role that geopolymers and plastics may play in changing businesses via decreased carbon footprints, energy efficiency, and waste reduction. The transformational promise is not limited to mechanical competence, but extends beyond it, sparking ideas for a greener, more sustainable future. The voyage is not without its difficulties. The route to realising the full potential of geopolymer-plastic composites necessitates creative solutions, from manufacturing complications to recycling complexities. Promising options arise as continuing research efforts dive into new territory. Nanomaterials, sophisticated processing techniques, and unique recycling processes demonstrate the collective will to overcome hurdles and design a path forward. Exciting prospects abound as one considers the vista that lies ahead. As lines of investigation, tailored composites, multi-functional wonders, and complete sustainability analyses emerge. Diverse stakeholders - academics, manufacturers, and policymakers - are collaborating to expedite the integration of these composites into the
fabric of industries, exhibiting a collaborative spirit to solve difficulties and create progress. The synergy between geopolymers and plastics plays the role of a transforming protagonist in the epic tale of human development. The complex dance of molecules, as this research emphasises, encompasses a tale of persistence, adaptation, and creativity. We plant the seeds of a more sustainable, environmentally harmonious future by embracing this harmony. The composite materials that result from this fusion are a tribute not just to our collective capacity to build a world where development and preservation coexist. The promise of geopolymers and plastics converges in this manner to offer a route towards a brighter, greener, and more sustainable future.

Reference

2. P. Chindaprasirt, P. Jitsangiam, and U. Rattanasak, J Clean Prod 364, 132449 (2022)
4. R. Kunthawatwong, L. Sylisomchanh, S. Pangdaeng, A. Wongsa, V. Sata, P. Sukontasukkul, and P. Chindaprasirt, Constr Build Mater 328, 127084 (2022)
5. H. Unis Ahmed, A. S. Mohammed, and A. A. Mohammed, Constr Build Mater 394, 132266 (2023)
11. Y. Xue, A. Arulrajah, S. Horpibulsuk, and J. Chu, Constr Build Mater 369, 130618 (2023)

25. B. Gopalakrishna and D. Pasla, Constr Build Mater 391, 131810 (2023)


29. X. He, X. Shi, C. Chung, Z. Lei, W. Zhang, and K. Yu, Compos B Eng 221, 109004 (2021)

30. S. Yuan, S. Li, J. Zhu, and Y. Tang, Compos B Eng 219, 108903 (2021)


