Flowing Futures: Innovations in WASH for Sustainable Water, Sanitation, and Hygiene

G Mahesh Kumar1*, Prateek Chaturvedi2, A. Kakoli Rao3, Manish Vyas4, Vandana Arora Sethi5, Swathi B6, Kadim A Jabbar7

1Institute of Aeronautical Engineering, Hyderabad, Telangana, 500043, India
2Department of Mechanical Engineering, Amity University, Greater Noida, India
3Lloyd Institute of Engineering & Technology, Knowledge Park II, Greater Noida, Uttar Pradesh 201306
4School of Pharmaceutical sciences, lovely professional university, Phagwara, India
5Lloyd Institute of Management and Technology, Greater Noida, Uttar Pradesh, India-201306
6Department of Information Science Engineering, New Horizon College of Engineering, Bangalore, India
7National University of Science and Technology, Dhi Qar, Iraq

*Corresponding author: g.maheshkumar@iare.ac.in

Abstract The future of Water, Sanitation, and Hygiene (WASH) entails a combination of urgent difficulties and unparalleled prospects. In the pursuit of achieving universal access to clean water and sanitation, together with the promotion of sanitary practises, innovation has emerged as a crucial driver for sustainable advancement within the global society. The present study, entitled "Flowing Futures: Innovations in Water, Sanitation, and Hygiene (WASH) for Sustainable Provision of Water, Sanitation, and Hygiene," examines the ever-changing terrain of WASH by examining novel approaches, with the ultimate goal of visualising a future in which all individuals have equal and fair access to these essential human entitlements. This study focuses on the convergence of WASH (Water, Sanitation, and Hygiene) with technology, emphasising advancements in water purification, sanitation infrastructure, and interventions targeting behaviour change. This study investigates the impact of recent improvements in data analytics, remote sensing, and smart infrastructure on the monitoring and management of water resources. These technological developments have the potential to significantly improve efficiency and enable prompt response during times of crisis. Also, the initiative known as “Flowing Futures” places significant emphasis on the importance of community-led strategies, acknowledging that the establishment of sustainable solutions is contingent upon local empowerment and active participation. This study examines many case studies from different geographical areas, demonstrating the significant effects of participatory programmes that enable communities to assume responsibility for their water, sanitation, and hygiene (WASH) services. These initiatives also promote a sense of stewardship towards the environment.

1 Introduction

Water, Sanitation, and Hygiene (WASH) are fundamental components that underpin human health and overall well-being. In contemporary society, characterised by the constant celebration of technical progress, it is often tempting to disregard the profound importance of clean water, adequate sanitation, and diligent hygiene practises [1]. It is imperative to acknowledge that these fundamental components play a crucial role in the preservation and advancement of societies on a global scale [2]. The provision of Water, Sanitation, and Hygiene (WASH) services extends beyond mere convenience, encompassing critical aspects such as mortality, human dignity, and socioeconomic progress. This investigation examines the significance of WASH, the obstacles it confronts, and the advancements revolutionising this critical field. Throughout the course of this discourse, we shall explore the intricate facets of Water, Sanitation, and Hygiene (WASH) that significantly influence the structure of societies, economies, and the overall welfare of individuals. WASH, encompassing both macro-level global concerns and micro-level daily practises, is a crucial factor in ensuring a future that is healthier, more egalitarian, and sustainable for all individuals [3]. The primary and immediate significance of Water, Sanitation, and Hygiene (WASH) is in its capacity to protect human health and mitigate the occurrence of diseases. The provision of clean and safe drinking water is a fundamental aspect of promoting public health. In the absence of adequate access to clean water, communities face heightened susceptibility to waterborne illnesses such as cholera, typhoid, and dysentery, resulting in significant mortality rates, particularly among marginalised people residing in economically disadvantaged areas. The provision of adequate sanitation facilities, encompassing toilets and wastewater treatment systems, plays a crucial role in mitigating the transmission of infections. Insufficient sanitation practises result in the pollution of water sources and surrounding ecosystems, hence fostering an environment conducive to the proliferation of diseases such as diarrhoea. This ailment continues to be a prominent contributor to mortality rates among children below the age of five. The implementation of enhanced sanitation practises has the potential to substantially decrease the rates of mortality associated with these circumstances [4].

Hygiene practises, such as the act of handwashing with soap, are characterised by their simplicity and remarkable efficacy in mitigating the spread of infections. Frequent hand hygiene practises have a key role in mitigating the risk of many
infections, encompassing both minor ailments such as the common cold and more severe conditions as COVID-19. Hygiene education and behaviour modification campaigns are essential in facilitating the promotion of these practises. The provision of WASH services also serves to protect the dignity of individuals, with a special focus on women and girls. In several regions across the globe, women and girls have the responsibility of water collection and tasks associated with sanitation [5]. The absence of adequate access to uncontaminated water sources and sanitary infrastructure compels individuals to undertake arduous journeys, frequently under hazardous circumstances, in order to procure water. Not only does this activity occupy individuals' time, but it also exposes them to potential physical hazards [6]. Moreover, the lack of private and secure sanitation facilities can result in severe implications for the safety and dignity of women. Insufficient amenities render individuals susceptible to instances of harassment and assault when they are required to attend to their bodily needs, particularly during nighttime hours. The provision of secure and gender-sensitive sanitation alternatives is an essential measure in the pursuit of gender equality. Water, Sanitation, and Hygiene (WASH) play a crucial role in fostering economic and social development. The absence of dependable access to uncontaminated water and adequate sanitation poses a multitude of difficulties for both individuals and communities. The presence of water scarcity and inadequate sanitation can impede agricultural output, restrict economic prospects, and sustain the cycle of poverty [7]. The correlation between access to clean water and sanitation and enhanced school attendance is particularly evident among female students, who may otherwise experience absenteeism during menstruation [8]. Education has a pivotal role in disrupting the perpetuation of poverty and fostering the empowerment of forthcoming generations. In the context of a professional environment, it is imperative to have sufficient Water, Sanitation, and Hygiene (WASH) facilities in order to safeguard the well-being and enhance the efficiency of employees. Organisations and enterprises who prioritise the provision of secure sanitation and hygiene amenities for their workforce frequently observe a decline in employee absences and a corresponding rise in productivity levels. The preservation and responsible management of natural resources, ecosystems The concept of sustainability is fundamental to the field of Water, Sanitation, and Hygiene (WASH). The prudent administration of water resources and the proper handling of wastewater are crucial for the preservation of ecosystems and the safeguarding of the environment. Insufficient sanitation practises can lead to water pollution, which has detrimental effects on aquatic organisms, ecosystem integrity, and the contamination of water supplies utilised by both human populations and wildlife [9]-[12].

The implementation of advancements in wastewater treatment and recycling is crucial not only for the preservation of water resources but also for the mitigation of the environmental consequences resulting from human activities. The implementation of sustainable Water, Sanitation, and Hygiene (WASH) practises plays a significant role in advancing the overarching objective of environmental conservation and the safeguarding of natural resources for future generations, as shown in fig.1. In times of humanitarian crises and natural disasters, the availability of uncontaminated water and proper sanitation facilities becomes a critical determinant of survival [13]. Populations that have been displaced and are residing in environments characterised by excessive population density and inadequate sanitation are particularly vulnerable to the occurrence of disease epidemics. In such circumstances, the presence of sufficient water, sanitation, and hygiene (WASH) infrastructure, along with prompt emergency relief task, assumes paramount importance in mitigating the proliferation of disease and alleviating distress [14]. The integration of Water, Sanitation, and Hygiene (WASH) practises is intricately connected to the advancement of global health and the realisation of the United Nations Sustainable Development Goals (SDGs). WASH, which stands for Water, Sanitation, and Hygiene, plays a crucial role in the achievement of Sustainable Development Goal 3, which focuses on Good Health and Well-being, emphasises the significance of Water, Sanitation, and Hygiene (WASH) programmes in mitigating the worldwide illness load and enhancing health outcomes. Sustainable Development Goal 6, which pertains to Clean Water and Sanitation, places

Key Features of Cutting-edge Water Purification Technologies

- Reverse Osmosis
- UV Water Treatment
- Nanotechnology in Water Filtration

Fig.1 Key elements of cutting-edge water purification technologies usage
significant emphasis on Water, Sanitation, and Hygiene (WASH) as a central objective. The overarching purpose is to guarantee universal access to clean water sources and sufficient sanitation facilities for all individuals [15]. Sustainable Development Goal 5, which focuses on Gender Equality, highlights the significance of Water, Sanitation, and Hygiene (WASH) efforts that take into account the individual requirements of different genders. Such initiatives play a crucial role in empowering women and girls. Sustainable Development Goal 4, which focuses on Quality Education, highlights the significance of Water, Sanitation, and Hygiene (WASH) facilities in educational institutions. The provision of WASH services in schools not only improves the overall learning environment but also plays a crucial role in fostering regular attendance, particularly among female students. The achievement of Sustainable Development Goal 1, which aims to eradicate poverty, and Sustainable Development Goal 8, which focuses on promoting decent work and economic growth, necessitates the provision of sufficient water, sanitation, and hygiene (WASH) services. Sustainable Water, Sanitation, and Hygiene (WASH) practices contribute to the mitigation of climate change effects through the promotion of water and energy efficiency [15].

Water, a fundamental element for sustaining life, is a resource of utmost importance. Its limited availability has the potential to jeopardise not only the survival of humanity but also the equilibrium of ecosystems and the worldwide financial system [16]-[18]. The global water problem is a significant and intricate dilemma that the globe confronts in the 21st century. The present crisis involves a diverse range of interrelated concerns, encompassing water scarcity, pollution, insufficient availability of potable water and sanitation facilities, and the compounding effects of climate change and population expansion on these challenges. The worldwide water issue necessitates attention not only from an environmental perspective but also from the standpoint of survival, human rights, and sustainable development. Water scarcity is a fundamental aspect of the prevailing global water issue. Despite the Earth's predominant water coverage, a paltry 2.5% of this water constitutes freshwater, with only a fraction of it being readily available for human utilisation. The phenomenon of water scarcity is becoming increasingly prominent in numerous places worldwide due to factors such as population expansion, urbanisation, and escalating water demands for agricultural and industrial use [19]. Water pollution is an additional dimension of the worldwide water crisis. The quality of water supplies globally has been significantly impaired due to pollution caused by industrial runoff, agricultural chemicals, untreated sewage, and plastics. Contaminated water presents substantial health hazards, giving rise to ailments such as cholera and dysentery, and exerts severe ramifications on aquatic ecosystems. Point source pollution refers to the introduction of contaminants into water bodies at specified locations, such as industrial discharge sites or sewage outfalls [20]. Non-point source pollution arises from dispersed origins, such as agricultural runoff or urban stormwater runoff. The United Nations acknowledges the status of access to safe drinking water and sanitation as a fundamental human right. However, a significant number of individuals across the globe continue to face a lack of access to these fundamental demands. Insufficient access to resources can have severe repercussions, resulting in the emergence of waterborne illnesses, loss of life, and a decline in overall well-being. A considerable portion of the population, notably those in rural and socioeconomically disadvantaged regions, encounters challenges in obtaining clean and uncontaminated sources of drinking water. The population in question is dependent on water that has been poisoned, thereby exposing themselves to potential health hazards. The lack of basic sanitation facilities, such as toilets and effective wastewater treatment systems, results in the practice of open defecation and the subsequent pollution of water sources [21].

![Smart water monitoring system, measures water level over time.](image)

The phenomenon of climate change is intensifying the worldwide water dilemma. The availability of freshwater resources is being impacted by changes in precipitation patterns, characterised by alterations in the frequency and severity of droughts, as well as the melting of glaciers [22]. The exacerbation of the situation is attributed to the heightened severity
of extreme weather phenomena, such as hurricanes and floods, which contribute to the occurrence of water-related calamities. The phenomenon of drought and water stress is being exacerbated by climate change in numerous geographical areas, hence augmenting the challenges associated with water shortages. The impact of increasing sea levels on coastal regions is of significant concern due to the heightened vulnerability of these places [23]. This phenomenon has the potential to result in the incursion of saltwater into freshwater sources, hence leading to contamination. The global population is experiencing ongoing growth, which is resulting in increased demands on water supplies. The increasing population necessitates a greater quantity of water for essential purposes such as drinking, sanitation, and agricultural activities. The issue of water scarcity and pollution is further intensified by the expansion of population, particularly in densely populated urban regions. The issue of the global water crisis extends beyond its impact on human populations, as it poses a significant threat to the overall health and well-being of ecosystems. The preservation of aquatic biodiversity is jeopardised by various factors, including water pollution, habitat degradation, and modifications to river hydrology. The maintenance of robust ecosystems is crucial for the processes of water purification, flood regulation, and the sustenance of food resources. The issue of water scarcity possesses the capacity to incite conflict and induce displacement. The competition for finite water resources has the potential to intensify preexisting tensions, hence fostering instability and conflict at both intra- and inter-national levels. Water scarcity has been recognised as a contributing factor to migration in certain instances [24].

2. Water Innovations

Water, a fundamental element for sustaining life, is a limited and progressively valuable asset that is currently encountering unparalleled difficulties. The ecosystems, public health, and global stability are under risk due to water scarcity, pollution, and poor use. In order to tackle these pressing concerns, the emergence of water technologies is becoming recognised as vital solutions. The field of water purification has witnessed significant advancements through the introduction of innovative technologies such as reverse osmosis, UV treatment, and nanotechnology, which have brought about a transformative impact. They offer cost-efficient techniques for rendering brackish or contaminated water suitable for human consumption, hence enhancing the availability of potable water [25]. From Fig.2, Smart water monitoring systems have been developed to improve water management through the utilisation of Internet of Things (IoT) sensors and real-time data analytics. These systems are capable of detecting leaks, monitoring the quality of water, and optimising its distribution, so contributing to the conservation of water resources and the prevention of wastage. The field of desalination is witnessing advancements in energy efficiency and environmental sustainability, leading to the development of more sustainable desalination methods. In dry places, the exploration of alternate methods such as forward osmosis and solar desalination presents intriguing prospects for addressing freshwater requirements. Water recycling and reuse can be achieved by the implementation of advanced wastewater treatment methods, such as membrane bioreactors and anaerobic digestion. These technologies facilitate the safe and efficient treatment of wastewater, allowing for its subsequent reuse. This practise serves to alleviate the burden on freshwater resources and mitigate pollution. Nature-based solutions, such as artificial wetlands and green infrastructure, are being utilised to mimic natural processes in order to filter and effectively manage stormwater runoff. These solutions have the potential to enhance water quality and mitigate the occurrence of flooding [26]. Water-efficient agriculture involves the implementation of precision irrigation systems and the cultivation of drought-resistant crop types, which serve to effectively save water resources within the agricultural sector. This sector is recognised as the largest consumer of water on a global scale. The utilisation of artificial intelligence (AI) and machine learning techniques has been instrumental in enhancing the efficiency of water distribution, forecasting potential water quality concerns, and facilitating more intelligent decision-making processes within the domain of water management. Circular economy approaches refer to strategies and frameworks that aim to promote sustainable resource management and minimise waste generation [27]. These approaches emphasise the need of designing products and systems that enable the continuous circulation of materials and resources, thereby reducing the adoption of a circular economy paradigm has given rise to several advancements in the field of wastewater resource recovery, wherein valuable materials and energy are extracted from wastewater. The Significance of Mobile Water Treatment Units: Portable water treatment units play a crucial role in emergency response efforts and in providing clean water access to rural populations, hence addressing the need for clean water during times of crisis [28]. Water innovations are not solely focused on extending access to potable water, but also on improving water quality, preserving resources, and making significant contributions to global sustainability task [29]. The procedure efficiently eliminates a diverse array of impurities, encompassing salt, minerals, heavy metals, and certain organic molecules [30].

Reverse osmosis finds extensive application in the field of desalination, wherein it facilitates the conversion of seawater into potable and irrigation water resources. Additionally, it finds application in home water treatment systems, industrial operations, and wastewater treatment plants [31]. Reverse osmosis (RO) technology serves a crucial and indispensable role in guaranteeing a secure and dependable supply of freshwater in locations that confront water constraint. One of the notable benefits of reverse osmosis (RO) is its recognised effectiveness in eliminating diverse pollutants and generating drinking water of superior quality. The process necessitates only a little amount of chemical treatment, so rendering it ecologically sustainable. Also, it is worth noting that reverse osmosis (RO) membranes have the ability to be customised in order to effectively remove certain contaminants, hence increasing their adaptability. UV water treatment is a method of water disinfection that relies on the use of UV light to inactivate microorganisms, such as bacteria, viruses, and
The application of nanotechnology in water filtration is now in the experimental and developmental phases, showing significant potential. This technology has the potential to be utilised in both domestic point-of-use water filtration systems and larger-scale treatment facilities. Scientists are engaged in ongoing investigations to explore novel nanomaterials and filtration methodologies with the aim of enhancing the quality of water. Nanotechnology-based water filtration presents several advantages over traditional filtering systems, including better removal of contaminants, prolonged filter lifespan, and decreased energy use. The technology exhibits the capacity to effectively tackle complex water quality concerns and make valuable contributions towards the development of sustainable water treatment methods. Smart Water Monitoring Systems are sophisticated technological solutions that utilise the Internet of Things (IoT) to effectively monitor, analyse, and administer water resources [34]. These systems provide the collection and analysis of data in real-time, thereby offering significant insights into several aspects such as water quality, usage patterns, and prospective issues. In this discourse, we explore the constituents and advantages of Smart Water Monitoring Systems, encompassing Internet of Things (IoT) Sensors for Water Quality, Remote Water Quality Testing, and Real-time Water Usage Tracking. The utilisation of Internet of Things (IoT) sensors in the context of water quality monitoring plays a crucial role in the functioning of intelligent water systems. The sensors are outfitted with a range of probes and detectors that consistently monitor essential factors, including pH levels, dissolved oxygen, turbidity, temperature, and the existence of contaminants such as heavy metals or microorganisms in water sources. The data gathered by these sensors is relayed through wireless means to a central monitoring platform [35]-[36]. Remote water quality testing refers to the process of assessing the quality of water from a distance, without the need for physical presence. Remote water quality testing is a methodology that employs automated equipment and sensors to assess the quality of water in sites that are difficult to reach or access, such as rivers, lakes, or reservoirs. These systems employ continuous monitoring of water quality parameters and provide the transmission of data to a central control centre or a cloud-based platform [37]. The utilisation of remote water quality testing holds significant importance in the field of environmental monitoring, as it plays a crucial role in safeguarding the well-being of aquatic ecosystems and facilitating the timely identification of pollution incidents. Also, it is employed in the evaluation of source water for drinking water treatment facilities, hence aiding in the preservation of water quality benchmarks. One advantage of this technology is its ability to decrease the necessity for human sample and testing, hence mitigating the associated time and cost burdens. The system offers up-to-date information on the trends in water quality, facilitating prompt actions in response to alterations in water conditions and guaranteeing the safeguarding of ecosystems and public health [38]-[40].

3. Sanitation Innovations

The provision of adequate sanitary facilities is an essential entitlement of individuals and a critical element in promoting public health and overall welfare. However, a significant number of individuals across the globe face the challenge of inadequate access to sanitary and safe toilet facilities. Insufficient sanitation in numerous regions presents substantial health hazards, contributes to environmental contamination, and impedes overall socioeconomic progress [41]. In order to tackle these difficulties, novel methodologies are being devised to reimagine toilets and transform sanitation practises. Eco-friendly toilet designs have been specifically developed to optimise water consumption, mitigate ecological consequences, and improve sanitation in regions with limited resources. These designs frequently integrate characteristics such as low-flush mechanisms, dual-flush alternatives, and waterless toilets that mitigate water usage while efficiently managing waste disposal. These entities exhibit versatility in their applicability, encompassing diverse environments such as urban and rural locations, as well as encompassing a range of establishments, including households, schools, and public facilities. Environmentally friendly toilets are viable options for addressing sanitation challenges in areas experiencing water scarcity or inadequate sewage systems. The advantages encompass a reduction in the burden on freshwater resources, a decrease in the energy demand for sewage treatment, and a mitigation of the environmental impact associated with sanitation systems [41]. Waterless and low-flush toilets are novel sanitation technologies that have been developed with the aim of conserving water resources. Waterless toilets are designed to minimise or eliminate the use of water for waste disposal, whilst low-flush toilets are engineered to substantially decrease the volume of water needed for flushing in comparison to conventional toilets. These devices are appropriate for residential dwellings, public lavatories, business establishments, and isolated areas, particularly in cases when the preservation of water resources is of utmost importance. The advantages associated with these toilets encompass a notable decrease in water usage and the alleviation of strain on water supply systems. Additionally, they contribute to the mitigation of water pollution by reducing the amount of wastewater generated. The objective of innovative waste treatment solutions, such as on-site waste treatment systems and decentralised sanitation technologies, is to effectively and securely treat human waste without relying on large sewer infrastructure. These systems frequently utilise biological processes, such as anaerobic digestion, or other modern technology in order to decompose waste materials [42]. These systems are utilised in many settings, such as rural communities, places affected by disasters, and isolated regions where the establishment of centralised sewage systems is impractical. The advantages encompass mitigating the potential for disease transmission, facilitating the proper disposal of trash in locations lacking access to centralised infrastructure, and fostering the practise of waste material recycling and energy recuperation.
Smart sanitation management systems leverage advanced technologies, including as sensors and data analytics, to enhance the efficiency and effectiveness of various processes involved in the collection, transportation, and treatment of human waste [43]. These technologies provide the continuous monitoring of sanitary infrastructure in real-time and possess the capability to identify and detect various difficulties, including blockages and overflows. The implementation of these measures enhances the provision of sanitation services, decreases expenses related to maintenance, and mitigates environmental pollution through the prompt addressing of system malfunctions or inefficiencies. The innovation of sanitation systems to enhance toilet functionality encompasses more than mere convenience; it is a pivotal measure in advancing public health, conserving natural resources, and promoting sustainable development. These novel methods of sanitation are leading the path towards a global scenario in which secure and environmentally sustainable sanitation services are available to anyone regardless of their geographical or socioeconomic circumstances. By adopting these technological advancements, we can effectively tackle the issues related to sanitation and make significant contributions towards the development of healthier and more sustainable societies [44].

Eco-friendly toilet designs exemplify a noteworthy progression in the field of sanitation technology, prioritising the reduction of water use, mitigation of environmental repercussions, and improvement of sanitation conditions in regions facing resource limitations or environmental challenges. These novel designs integrate a range of characteristics and systems with the objective of attaining sustainable and effective waste management, as shown in fig.3. A notable characteristic of environmentally friendly toilets is its capacity to substantially diminish water usage. The utilisation of conventional flush toilets can result in a significant consumption of water during each flush, hence exacerbating water shortages in areas experiencing droughts or encountering difficulties in water supply. Eco-friendly toilets incorporate various processes such as low-flush options, dual-flush systems, and waterless designs to significantly reduce water consumption while maintaining efficient waste disposal capabilities [45]. These toilets exhibit versatility and are utilised in diverse contexts, encompassing both urban and rural environments, as well as residential dwellings, educational institutions, communal amenities, and commercial establishments. The versatility of these entities renders them highly advantageous in areas characterised by limited water resources or the absence of conventional sewage systems. The advantages of environmentally friendly toilet designs encompass more than just the preservation of water resources. In addition, they make a valuable contribution to the promotion of environmental sustainability through the mitigation of freshwater resource depletion, the reduction of energy consumption in sewage treatment processes, and the overall diminishment of the environmental impact connected with sanitation systems. Additionally, the cost-effectiveness of these solutions renders them a feasible option for tackling sanitation issues in both developed and underdeveloped areas. Waterless and low-flush toilets are novel sanitation technologies that have been specifically engineered to effectively tackle the pressing issue of water conservation [46]. The utilisation of these toilets presents a notable reduction in water consumption for waste disposal in comparison to traditional flush toilets. Consequently, their implementation holds considerable significance in areas grappling with limited water resources or prioritising water conservation efforts. Waterless toilets, as their name implies, employ minimal or negligible amounts of water for the purpose of waste disposal. Instead of employing water-based methods, alternative mechanisms such as hoover technology, incineration, or composting are utilised for the safe management of human waste. In addition to water conservation, the use of this approach also assists in mitigating the production of wastewater, hence diminishing the ecological ramifications associated with sanitation systems. In contrast, low-flush toilets employ a reduced volume of water per flush in comparison to conventional toilets. Frequently, these systems integrate dual-flush capabilities, providing customers with the choice to select a smaller volume flush for liquid waste and a higher volume flush for solid waste. This customisation facilitates the optimisation of water usage while maintaining the effectiveness of sanitation [47].
Waterless and low-flush toilets find utility in many contexts, encompassing residential dwellings, public lavatories, commercial edifices, and isolated areas. The advantages encompass notable decreases in water usage, relief of pressure on water supply systems, and mitigation of water pollution through the minimization of wastewater volume. Also, they play a role in promoting sustainable and environmentally friendly sanitation practises [48]. The implementation of novel waste management strategies plays a pivotal role in the transformation of sanitation methodologies, hence guaranteeing the effective and secure disposal of waste materials. The proposed solutions primarily prioritise the environmentally responsible treatment of human waste, frequently utilising modern technologies and decentralised sanitation systems. An essential element of these proposed solutions revolves around the implementation of on-site waste treatment systems, which have the capacity to effectively treat human waste without necessitating the construction of elaborate sewage infrastructure. These systems employ various methods like as biological processes, anaerobic digestion, or other new technologies to decompose trash and transform it into a state that is suitable for safe disposal or potential reuse. These systems hold significant value in rural communities, disaster-affected regions, and isolated areas where the implementation of centralised sewage systems is not feasible [49]. Decentralised sanitation technologies represent a distinct classification of inventive waste treatment methods. The objective of these technologies is to offer localised waste treatment alternatives, hence diminishing the dependence on centralised sewage systems. Flexibility and adaptability are key attributes of these solutions, particularly in regions where access to adequate sanitary infrastructure is limited. There are numerous advantages associated with the implementation of novel waste treatment methods. The implementation of these measures serves to mitigate the potential for disease transmission, facilitate the proper disposal of trash in places lacking access to centralised infrastructure, and foster the utilisation of waste materials for recycling and energy generation. By integrating these technologies into sanitation practises, it is possible to get a higher level of sustainability, efficiency, and environmental responsibility in waste management [50].

![Smart Water Monitoring System](https://example.com/smart_water_monitoring_system.png)

Fig. 4 Real data Monitoring System

The fig.4 introduces the "Smart Water Monitoring System," which serves as a conceptual depiction of a technology-driven system aimed at monitoring and overseeing many facets of water quality and delivery. These technologies find application in practical scenarios to guarantee the effective and environmentally conscious administration of water resources [51]. The process of data gathering in Smart Water Monitoring Systems involves the utilisation of sensors and data collection equipment to acquire real-time data pertaining to various water quality indicators, including but not limited to pH, turbidity, temperature, dissolved oxygen, and other relevant factors. The sensors are carefully positioned at multiple locations across a water distribution network, encompassing water treatment facilities, reservoirs, pipelines, and distribution nodes. Data transmission involves the transfer of collected data to either a central control system or a cloud-based platform through the utilisation of wireless communication technology. This enables the ongoing surveillance and remote retrieval of data pertaining to the quality of water [52]. The data analysis process involves real-time examination of the data in order to identify any anomalies or deviations from pre-established water quality criteria. The application of machine learning algorithms and predictive analytics enables the identification of trends and prospective concerns. Alerts and notifications are activated by the system in response to the identification of a water quality concern or a possible issue. These alerts and notifications are directed towards pertinent stakeholders, such as water utility operators, environmental authorities, and perhaps the general public. Automation can be integrated into Smart Water Monitoring Systems to enhance their functionality. As an illustration, in the event that the system identifies an abrupt decline in water quality, it has the capability to initiate measures such as modifying the dosage of chemicals in water treatment facilities or isolating tainted water sources in order to mitigate the dissemination of contaminants.
4. Hygiene Innovations

Advanced handwashing technologies have emerged as a notable advancement in the promotion of efficient hand hygiene, especially in situations where conventional methods may be less feasible or convenient. The technologies consist of touchless faucets, automatic soap dispensers, and hand dryers that are equipped with sensors. Through the elimination of physical touch with surfaces, these technologies mitigate the potential for cross-contamination, so promoting adherence to consistent handwashing practices and ultimately enhancing overall hygiene. Touchless handwash stations are a type of sanitation equipment that allows individuals to wash their hands without making physical contact with the station. Typically, these stations are equipped with automated sensors for dispensing water, soap, and either paper towels or hand dryers. Individuals have the ability to utilise these facilities without coming into contact with surfaces that may be contaminated, hence mitigating the transmission of pathogens and promoting the practise of frequent hand hygiene.

Water-efficient handwashing systems place equal importance on maintaining hygienic standards and promoting environmental sustainability. The primary objective of these systems is to optimise the delivery of water for the purpose of handwashing, ensuring that an appropriate quantity is provided to achieve successful results, while simultaneously minimising any unnecessary water usage. Handwashing practices hold significant value in areas characterised by water shortage or where conservation measures are important, thereby guaranteeing the maintenance of an environmentally sustainable approach to hand hygiene. The field of hand sanitization innovations involves the advancement of novel formulations and dispensing techniques for hand sanitizers. The objective of these improvements is to enhance the accessibility and user-friendliness of hand sanitization. For example, the availability of portable and pocket-sized hand sanitizer sprays or wipes offers individuals a simple means of upholding hand hygiene when on the move [53]-[55]. Community participation and empowerment are essential ideals that underpin the Water, Sanitation, and Hygiene (WASH) sector. The approach entails the active engagement of local communities in decision-making processes, project planning, and implementation. The fostering of a sense of responsibility and commitment is facilitated by the empowerment of communities through the provision of a voice and ownership in Water, Sanitation, and Hygiene (WASH) activities. Communities that are actively involved and empowered are more inclined to ensure the longevity of water, sanitation, and hygiene (WASH) infrastructure, embrace sanitary behaviours, and actively contribute to the long-term success of related projects. The concept of participatory decision-making in the Water, Sanitation, and Hygiene (WASH) sector places significant emphasis on the involvement and engagement of community members, stakeholders, and beneficiaries in the various stages of planning and decision-making related to WASH initiatives. The acknowledgement is made that individuals who are directly impacted by water and sanitation interventions should be given the opportunity to participate in the process of project design, selection of location, and execution. This methodology guarantees that initiatives are in accordance with the specific requirements and preferences of the local community, so augmenting their pertinence, acceptance, and long-term viability [56].

5. Challenges and Solutions

The issue of water shortage poses a significant obstacle in the pursuit of sustainable provision of clean water. The process entails the application of water-conserving technology, effective water management strategies, and the exploration of alternative water sources to address the increasing need for freshwater resources, specifically in places characterised by aridity and water scarcity. The implications of climate change have a substantial effect on both the availability and quality of water resources. The potential consequences of climate change, such as elevated temperatures, modified precipitation patterns, and intensified occurrences of extreme weather events, have the capacity to disturb water resources and amplify the vulnerability to waterborne illnesses. The implementation of mitigation and adaptation methods is crucial in effectively addressing the impacts of climate change on water resources and infrastructure. Water resource management is a crucial aspect of sustainable development and environmental conservation. It involves the planning, development, and utilisation of water resources in a manner that ensures their long-term. Efficient water resource management is crucial for maximising the allocation and utilisation of water. The subject matter encompasses the oversight of water resources, the implementation of sustainable practises for managing groundwater, the safeguarding of watersheds, and the establishment of agreements for the equitable distribution of water and the mitigation of disputes arising from its use. The establishment of resilience within water delivery systems is of paramount importance in order to effectively endure and recover from various shocks and disruptions. The implementation of infrastructure enhancements, the development of comprehensive emergency response strategies, and the establishment of redundant water sources can significantly augment the capacity to sustain water services in the face of natural disasters or system malfunctions. The process of surmounting obstacles to sanitation access include the resolution of various variables, including the absence of proper sanitation facilities, insufficient sewage systems, and cultural stigmas associated with sanitation. The expansion of sanitation coverage is facilitated by the implementation of community-led sanitation programmes, the adoption of new toilet designs, and the execution of behaviour change initiatives. Cultural and social factors have a significant role in shaping various aspects of society. These factors encompass a wide range of elements, including beliefs, values, norms, traditions, customs, and social structures [57]. Education and awareness initiatives serve to enhance the public's comprehension of water and sanitation matters. Educational institutions, communal seminars, and public awareness initiatives are essential in disseminating knowledge on cleanliness protocols and the preservation of water resources. The
concept of cultural sensitivity refers to the ability to recognise and respect the beliefs, values, customs, and practises of individuals from diverse Cultural sensitivity plays a crucial role in water and sanitation programmes by ensuring that interventions are in accordance with the prevailing cultural norms and practises of the local community. This method facilitates the cultivation of community acceptability and active engagement in Water, Sanitation, and Hygiene (WASH) initiatives. The establishment of collaborations between governmental entities, non-governmental organisations, the commercial sector, and local communities is vital in order to facilitate the successful promotion of hygiene practises. Collaboration facilitates the consolidation of resources, talent, and knowledge in order to completely tackle water and sanitation concerns.

6. Conclusion

Throughout the course of this discourse, we have examined a variety of pivotal advancements within the Water, Sanitation, and Hygiene (WASH) domain. These innovations span a range of sophisticated technology, circular economy techniques, community engagement strategies, and sustainability measurements, among other factors. They together contribute to the enhancement of access to clean water, the improvement of sanitary practises, and the preservation of crucial resources.

- The advancement of sustainable Water, Sanitation, and Hygiene (WASH) practises necessitates the incorporation of these innovative approaches into all-encompassing and tailored solutions that include individual contextual factors.
- A comprehensive approach is necessary to tackle the multifaceted issues of water scarcity, the implications of climate change, cultural and social aspects, financial accessibility, and infrastructure constraints. In order to attain sustainable Water, Sanitation, and Hygiene (WASH) practises, it is imperative to give precedence to community involvement, participatory decision-making processes, capacity enhancement, and the dissemination of case studies to facilitate the adoption of optimal approaches.
- As we contemplate the obstacles and potentialities within the Water, Sanitation, and Hygiene (WASH) sector, it is crucial to emphasise the necessity for proactive involvement and mobilisation. Various stakeholders, including governments, non-governmental organisations, the private sector, civil society, and people, collectively contribute to the promotion of universal access to clean water and sanitation.
- The need of fostering collaboration, promoting innovation, and cultivating unwavering devotion is paramount in the endeavour to ensure inclusivity and equity in the pursuit of a healthier and more sustainable global environment.

References

[16] Das, Samir Chandra, Manas Kumar Sanyal, and Jatindra Kamal Das. "Green IoT vision SDG in the Water, Agriculture, Sanitation and Hygiene Environment Management in Smart World."

