Analytical model of reliability of the freight rail transportation forecasting system

Natalia Zhuravleva* and Liana Chechenova

1Emperor Alexander I St. Petersburg State Transport University, Transportation Economics Department, Moskovskij prospect, 9, 190031 St. Petersburg, Russia

Abstract. The purpose of the study: to develop an analytical model of the reliability of the freight transportation forecasting system by railway transport. Methods: economic and mathematical methods and models of transportation forecasting adapted to the peculiarities of railway freight transportation – models based on "Bottom/Top" approaches, methods of predictive adjustment by types of cargo, methods of scenario forecasting. Results: an analytical model of the reliability of the freight rail transportation forecasting system has been developed, the distinctive feature of which is the integration of cargo transportation evaluation indicators, characteristics of scenario methods and parameters of the forecasting process, a forecast has been formed for the volume and structure of freight traffic following through the Oktyabrskaya railway landfill for the future up to 2030 in the category of main types of cargo.

1 Introduction

Railway transport occupies a special place in Russia's foreign trade. The year 2022 was a turning point for the Oktyabrskaya Railway landfill, because in the conditions of the changing geopolitical and economic situation, the traditional logistics of cargo transportation was disrupted – the use of the western direction through railway border crossings and seaports of the Northwest, which together provided foreign economic relations with the EU, North America and by some Asian countries. The main reasons for the change in the logistics of cargo transportation are:

– sanctions restrictions/ban on the export/import of a number of goods in relation to the Russian Federation;
– refusal of a number of the largest companies of the EU, the UK, the USA, etc. to transport goods to / from / in transit through the territory of the Russian Federation and vice versa;
– prohibition of Russian-flagged vessels entering ports in the EU, USA, UK, Canada, etc.;
– refusal of container shipping lines (Maersk, CMA CGM, Happag Lloyd, etc.), as well as feeder carriers in the Baltic direction (X-Press Feeders, Samskip, etc.) to work with Russian cargo and Russian seaports;

* Corresponding author: liana1981-149@mail.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
withdrawal of international express cargo carriers (DHL, FedEx, etc.) from the Russian market, the actual termination of international cargo transportation by Russian cargo companies;

- increase in the cost of insurance services for vehicles and cargo transported in the Russian Federation;

- an increase in the level of loading of the Eastern landfill of the Russian Railway network with raw materials (primarily coal) sent to Asian markets, etc.

The desire of States to rational consumption of natural resources has a direct impact on the volume and structure of transported railway cargo. In the context of the ongoing research, the Oktyabrskaya Railway (ORW) landfill, which borders with European countries and has access to the ports of the Baltic Basin, is particularly interesting for us.

The transport and logistics system of the Northwestern Federal District proved to be highly resistant to external challenges, which is confirmed by active work to increase the volume of transported goods:

1. JSC «Big Sea Port of Saint Petersburg» implements the launch of new sea lines of large companies:
 - SUEK JSC line for coal transportation to Morocco, Israel, India, China;
 - The line of the companies TLC Ruscon and Mountain Air Shipping;
 - The FESCO line to Latin America for the transportation of agricultural products from Ecuador and other Caribbean countries to the seaports Ust-Luga and Bronka;
 - The line of the company "Module" between JSC "Petroleosport" and the seaport "Nava-Sheva" (India) – for export to India and the Asia-Pacific countries of Russian cargo (paper, chemical products, lumber, etc.) and import of textiles, rice, chemical products, medicines, equipment, etc. from India, etc. [1].

2. Transportation companies are developing new lines and launching modified services in order to restore the volume of cargo transported through the ports of the Northwest. For example, the Russian transport group FESCO announces the launch of a direct sea service from the ports of China to St. Petersburg via the Suez Canal without transshipment in the ports of Europe. The basis of its cargo flow is formed by consumer goods, products of enterprises of the timber industry, chemical complex and metallurgical industry. Besides, the carrier operator implements:
 - Intermodal service from Asia to Kaliningrad – on the route "Vladivostok – St. Petersburg" (terminal seaport "Bronka") - Kaliningrad (seaport "Baltiysk");
 - Railway service from China to St. Petersburg in transit through Kazakhstan, Mongolia, Zabaikalsk [2].

3. Shippers/consignees of the Oktyabrskaya Railway landfill in the future are focused on achieving sustainable economic growth rates. The analysis of target plans for the development of production facilities of the largest fuel and energy organizations of the Russian Federation in the context of the main nomenclature positions showed the following results:

 Hard coal

 JSC "UK Kuzbassrazrezugol" has balance reserves of coal in the amount of more than 2.5 billion tons with an increase in the volume of processing and enrichment of coal over the past 25 years by 5 times [3].

 JSC "Suek-Kuzbass" plans investments in the amount of 1 billion in 2023.$ to increase the capacity of mining enterprises in Primorsky, Khabarovsky Krai and Kuzbass and 1 billion.$ for the purchase of new equipment in Russia, Belarus, India, Turkey, South Africa, support of enrichment plants and development in the development of MMTP JSC [4].

 Oil and petroleum products

 JSC "RN-Trans" plans to increase the production of hydrocarbons to 330 million tons/year in the future by 2030.
PJSC NGK Slavneft – plans to complete the implementation of an investment project for the construction of a deep oil refining complex for 67 billion rubles by 2024 within the framework of a cooperation agreement between PJSC NK Rosneft, PJSC Gazprom Neft and the government of the Yaroslavl region.

Fertilizers

PJSC Uralkali is planning to implement an investment project to introduce new technologies for the development of serial production of potassium chloride in the amount of 2.3 million tons per year until 2035.

JSC "Apatit" indicates the launch of new urea and ammonia production facilities in 2029 at the Volkhov site landfill in plans for the development of production facilities.

PJSC Acron plans to increase by 1.2 million tons to the ports of the Northwest from 2028 as part of a signed long-term agreement with Ultramar LLC for the transshipment of mineral fertilizers with a volume of more than 1.2 million tons per year.

Eurochem-UKK LLC points to the active implementation of the EuroChem North-West-2 project for the construction of a new enterprise with a capacity of 1.1 million tons of ammonia and 1.4 million tons of urea per year with a deadline for commissioning in 2023. [5].

Therefore, the sanctions and restrictions did not radically affect the production indicators of the key sectors of the fuel and energy complex of the Russian Federation (the report "Turn to the East" [6] of the "Center for Energy Development"), since Russian companies restored the routes of energy exports to friendly countries. In the short term, the greatest uncertainty is associated with the consequences of the price ceiling for Russian oil and oil products, in the long term - with the search for an alternative market to Europe for the sale of fuel and energy resources.

2 Data and Methods

The basis of the study is the data of long-term trends in the consumption of fuel and energy resources, affecting the change in the structure of cargo transportation through the landfill of the ORW. The existing regulatory framework for regulating the process of effective use of natural resource potential and the main parameters of consumption volumes was analyzed. Table 1 shows the results of the analysis.

Table 1. Long-term trends fixed in regulatory documents.

<table>
<thead>
<tr>
<th>Document name</th>
<th>Tasks that ensure the effective use of natural resource potential</th>
</tr>
</thead>
</table>
– intensive scenario: a drop in energy exports for 2031-2050 by an average of 2.1% annually; a reduction in net greenhouse gas emissions into the atmosphere by 60% in 2050 to the level of 2019. |
Energy Strategy of Russia for the period up to 2035
(Approved by the Decree of the Government of the Russian Federation dated 09.06.2020 №1523-p)

- maintaining leadership in the production and sale of energy resources by diversifying exports and increasing the volume of energy exports by more than 20%, including to the Asia-Pacific countries by 2-3 times;
- oil industry: crude oil export growth by 2035 – by 3 – 25% with an increase in exports to the Asia-Pacific countries by 1.7 – 2.3 times;
- oil refining: increase in the yield of light oil products from 58.6 to 70-79% with a decrease in the volume of oil sent for processing to 225 – 235 million tons by 2035.;
- gas industry: production growth up to 40%, supply growth to the Asia-Pacific market by 5-9 times, LNG production growth by 3-6 times;
- coal industry: the growth of coal exports by 1.5 times, including to the Asia-Pacific countries, the creation of new coal mining centers.

<table>
<thead>
<tr>
<th>The name of the indicator by year, million tons</th>
<th>Conservative scenario</th>
<th>Basic scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2022</td>
<td>2025</td>
</tr>
<tr>
<td>The volume of railway cargo transportation</td>
<td>1 401</td>
<td>1 506</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The volume of imports in the whole of the Russian Federation, million tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil and petroleum products</td>
</tr>
<tr>
<td>Coal/Coke</td>
</tr>
<tr>
<td>Chemical and mineral fertilizers</td>
</tr>
<tr>
<td>Ore</td>
</tr>
<tr>
<td>Building materials</td>
</tr>
<tr>
<td>Ferrous metals</td>
</tr>
</tbody>
</table>

Transshipment/export volumes through the ports of the North-West, million tons

Oil and petroleum products	192,2	186,6	177,6	200,0	202,1	205,5
Coal/Coke	56,1	51,6	44,9	64,5	68,2	74,8
Ferrous metals	6,5	7,0	7,9	6,5	7,0	7,9
Ore	4,8	5,8	8,0	5,1	6,6	9,9
Chemical and mineral fertilizers	19,2	23,0	31,1	20,0	25,1	36,5
Others	56,7	60,7	67,9	56,7	60,7	67,9
Total	374,8	388,2	411,4	384,3	408,0	450,8
Flagship report on Global Energy Prospects up to 2050 ("World Energy Outlook 2022")

- the scenario of the announced policy (STEPS), which reflects all the political intentions and goals revealed today in terms of energy development, supported by detailed measures for their implementation;
- the Announced Commitments scenario (APS), which takes into account all the climate commitments of countries;
- "Net Zero emissions by 2050" (NZE2050), in which a large number of countries and companies are fulfiling the task of achieving a zero emissions balance (Net Zero Emissions).

Source: public data, author's analysis.

The study uses economic and mathematical methods and transportation forecasting models adapted to the specifics of railway freight transportation, namely:
- forecast models based on Bottom/Top approaches [7],
- the method of predictive adjustment by type of cargo, taking into account the current volatility of the market of transport services and logistics of transportation,
- methods of scenario forecasting with the integration of the possible degree of prediction, the possibility of its formation, the key factors that determine a particular result / variant of forecasting.

3 Results

An analytical model of the reliability of the railway freight forecasting system has been developed, the distinctive feature of which is the integration of cargo transportation evaluation indicators, the characteristics of scenario methods and the parameters of the forecasting process (Fig. 1).

```
Retrospective

Indicators assessing the volume and structure of cargo transportation

Analysis of data on shippers and consignees

The horizon of retrospection (T₀)

Perspective

Forecasting scenarios taking into account the changing geopolitical and economic situation

Efficiency of use of natural resource potential

Forecast horizon – short-term/long-term (Tₙ⁺ₜ,...)

Model of reliability of the forecasting system

Y₁

Transportation forecast cargo railway

Current period (T₁)

Time, T
```

Fig. 1. Model of reliability of the forecasting system

The scenario forecast of the volume and structure of freight traffic going through the landfill of the ORW for the future up to 2030 includes a basic target scenario. The model parameters take into account retrospective trends in the medium and long-term horizons. The quality of analytical tools is ensured:
- using the information base and its modification taking into account the current changes in the market environment, sanctions and the generally prevailing geopolitical and economic situation;
- refinement of the forecasting tools by introducing into the calculation the coefficients of correction of the forecast series by smoothing the quadratic function, as well as taking into account possible changes in the number of shippers and consignees affecting the volume and structure of cargo transportation, which ensures the reliability of the forecast in terms of consistency and correlation of data with the final results.

2. A forecast of the volume and structure of freight transportation through the ORW landfill for the period up to 2030 by main types of cargo has been prepared.

<table>
<thead>
<tr>
<th>Type of cargo, million tons</th>
<th>Forecast horizon, year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2023</td>
</tr>
<tr>
<td>Oil and petroleum products</td>
<td>83,53</td>
</tr>
<tr>
<td>Hard coal</td>
<td>68,05</td>
</tr>
<tr>
<td>Chemical and min. fertilizers</td>
<td>68,28</td>
</tr>
<tr>
<td>Iron and manganese ore, color and sulfur raw materials</td>
<td>45,15</td>
</tr>
<tr>
<td>Construction cargo</td>
<td>39,19</td>
</tr>
<tr>
<td>Others</td>
<td>80,65</td>
</tr>
<tr>
<td>Total</td>
<td>384,84</td>
</tr>
</tbody>
</table>

Source: ORW data, author's analysis

In general, for the forecast period by 2030, we note for reference:
- increase in the volume of transportation in general – 84.65 million tons,
- the growth rate in terms of cargo transportation – 121.99%,
- the growth rate in the volume of oil and petroleum products transportation – 120.15%,
- growth rates in the volume of coal transportation – 114.37%,
- the growth rate in the volume of chemical and mineral fertilizers transportation is 138.19%.

4 Discussion

The results of this study have the possibility of wide practical application in the process of optimizing the activities of transport companies, which directly affects the economy of a particular region [8, 9]. When developing a model of reliability of the railway freight forecasting system, we find confirmation of the reliability of the data architecture proposed by us, which ensures the effectiveness of managerial decision-making in conditions of uncertainty and the achievement of complex goals within the framework of developed transport development strategies [10]. The parameters of modeling the demand for rail transportation, taking into account structural changes affecting the activities of the main sectors of the national economy [11], can significantly improve the analytical base for the development of freight forecasts. In general, a significant amount of research indicates the importance of finding optimal solutions when predicting the volume and structure of cargo
transportation in the current instability of the transport services market and numerous logistical sanctions restrictions [12, 13].

5 Conclusion

The prospects for the growth of the regional economy directly depend on the efficiency of the development of the transport system and logistics of transportation. At the same time, their development is directly related not only to changes in transport and logistics routes, but also to sustainable development goals in terms of responsible resource consumption, which is reflected in national sectoral development strategies. In addition, the presence of sanctions pressure and the refusal of a number of companies to work with Russian carriers and cargo complicates the process of planning and forecasting cargo transportation in the medium and long term. In our opinion, the proposed model makes it possible to improve the accuracy of calculations and the reliability of forecast results by modifying traditional forecasting methods and models.

References

7. F.S. Pehterev, Prezentaciia: Obosnovanie dolgosrochnych perspektiv i razrabotka scenarnogo prognoza ob’emov perevozok gruzov zheleznodorozhnym transportom na period do 2030 goda s ispol’zovaniem mezhotraslevych balansov