Investigation of a fuel-free power generating plant and evaluation of the effectiveness of its use

Arsen Mukolyants*, Irina Sotnikova, and Dilbar Ergasheva

Tashkent State Technical University n.a. Islam Karimov, Tashkent, Uzbekistan

Abstract. The development of resource-saving technologies for existing energy sources is one of the priority tasks of the energy strategy of the Republic of Uzbekistan, which provides for the reduction of losses and cost reduction at all stages of the technological process during the extraction, preparation and transportation of natural gas. Today, it is very promising to utilize the energy of excess pressure of natural gas at gas distribution stations using expander units. A solution to the problem of lack of gas heating in the expander-generator unit can be a heated installation scheme through the use of a gas heating system with an air heat pump unit. Calculations of the energy efficiency of an expander generating unit were carried out under various operating conditions when heating natural gas in front of the expander using a heat pump unit.

1 Introduction

Many gas distribution stations (more than 400) and gas distribution points (more than 18,000) in the gas transportation system of the Republic of Uzbekistan are used to change the parameters of transported natural gas to meet the requirements of consumers. Depending on the geographical location, different sources of electricity are used at gas distribution stations and points. The most commonly used source is gas turbine plants, but there are also facilities that use renewable energy sources. The use of autonomous power supply sources operating on the useful use of secondary energy resources in such GCP and GDS is still a rare phenomenon. [1,2].

The choice of the scheme for the use of EGU at the facility depends on the conditions of its operation and the design features of the unit. In addition, the choice of the EGU for switching on the GDS (GCP) depends on the goals and objectives for which the unit is used. [3,4].

The most common options for including EGU in GDS have a heat exchanger located in front of the EGU, which preheats the gas before it is fed to the expander generator set [5,6,7].

* Corresponding author: arsen5675@mail.ru
2 Methods

The scheme being developed for switching on the EGU at the GDS of an automobile gas-filling compressor station (AGFC) “Navoi Concrete Complex” in the Republic of Uzbekistan, which refuels motor vehicles with compressed natural gas, where the EGU was introduced, is shown in Fig.1.

![Fig. 1. Installation diagram with EGU and AHPU.](image)

The experimental setup had the following main components:

BROTJE Heizung model BSW 6A air heat pump, which was used as an air HPU when heating gas before entering the expander. The coolant was air. High-precision ultrasonic flow meter FLEXIM model FLUXUS ADM 6725, which was used to measure gas flow at the inlet and outlet of the expander. Two ALMEMO 2590-9 V5 measuring complexes with Ni-CrNi thermocouples, which were used to measure the gas temperature at the inlet and outlet of the expander. An electric power measuring device that was used to measure the electric energy consumed by the compressor drive. [8,9,10].

3 Research results and discussion

Initially, the gas flow through the gas pipeline was determined at the available capacity of the units and the initial design parameters: the operating pressure in the gas pipeline; ambient air temperature; gas cooling temperature.

The initial data are presented in tables 1 and 2.

<table>
<thead>
<tr>
<th>Table 1. Technical parameters of GDS AGFC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGFC</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>“Navoi Logistics”</td>
</tr>
<tr>
<td>“Navoi Concrete Complex”</td>
</tr>
<tr>
<td>“Navoi Fayz Oil”</td>
</tr>
</tbody>
</table>
Table 2. Main parameters of gas components at GDP.

<table>
<thead>
<tr>
<th>Components</th>
<th>Volume concentration, in fractions of unit</th>
<th>Molecular weight kg/kmol</th>
<th>T_{cr}, K</th>
<th>P_{cr}, MPa</th>
<th>Dynamic viscosity, kgs/m² 10^{-7}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>0,98</td>
<td>16,04</td>
<td>190,5</td>
<td>4,49</td>
<td>10,3</td>
</tr>
<tr>
<td>Ethan</td>
<td>0,01</td>
<td>30,07</td>
<td>306</td>
<td>4,77</td>
<td>7,5</td>
</tr>
<tr>
<td>Propane</td>
<td>0,0003</td>
<td>44,09</td>
<td>369</td>
<td>4,26</td>
<td>6,9</td>
</tr>
<tr>
<td>Bhutan</td>
<td>0,0007</td>
<td>58,12</td>
<td>425</td>
<td>3,5</td>
<td>6,9</td>
</tr>
<tr>
<td>Pentane</td>
<td>0,00023</td>
<td>72,15</td>
<td>470,2</td>
<td>3,24</td>
<td>6,2</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>0,0007</td>
<td>44,01</td>
<td>305</td>
<td>7,28</td>
<td>13,8</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0,008</td>
<td>28,02</td>
<td>126</td>
<td>3,39</td>
<td>16,6</td>
</tr>
<tr>
<td>Oxygen</td>
<td>0,00007</td>
<td>32,00</td>
<td>154,9</td>
<td>5,01</td>
<td>1,94</td>
</tr>
</tbody>
</table>

To determine the efficiency of the scheme shown in Fig.1, experiments were carried out on the installation, the scheme of which is shown in Fig.2, and its fragments of a general view in Fig.3.

The following initial data were accepted for the calculation:

- Density of the gas mixture $\rho_{mxt}=0,709$ kg/m³;
- Gas temperature $t=40^\circ$C;
- Pressure at the entrance to the installation $P_{ent} = 0,6$ MPa;
- Pressure at the outlet to the installation $P_{out} = 0,25$ MPa;
- Gas consumption $Q =810000$ m³/month

Gas constant R, kJ/kg·K, for natural gas mixture:

$$R = \frac{R_0}{M_{mxt}} = \frac{8,314}{15,97} = 0,523 \text{ kJ/kg·K},$$

where M_{mxt} - molecular weight of the gas mixture, kg/kmol;

R_0 - universal gas constant, J/(mol·K);

$R_0 = 8,314$ J/(mol·K).
Fig. 3. Fragments of the expander generator set.

Molecular weight of natural gas, kg/kmol:

\[M_{\text{mxt}} = \rho_{\text{mxt}} \cdot 22.4 \] (if the density of the mixture is given \(\rho_{\text{mxt}} \))

or \(M_{\text{mxt}} = \frac{\sum V_i m_i}{100} \)

\[M_{\text{mxt}} = \rho_{\text{mxt}} \cdot 22.4 = 0.709 \cdot 22.4 = 15.97 \text{ kg/kmol}, \]

where \(V_i \) – volume concentrations of gas components, %; \(V_1 \) – (90-97.9%) volume concentration of methane; \(V_2 \) – (0.75-4.75%) volume concentration of ethane; \(V_3 \) – (0.30-1.2%) volume concentration of propane; \(V_4 \) – (0.01-0.5%) volume concentration of i-butane; \(V_5 \) – (0.4%) volume concentration of n-butane; \(V_6 \) – (0.2%) volume concentration of i-pentane; \(V_7 \) – (0.15%) volume concentration of n-pentane; \(V_8 \) – (0.3%) volume concentration of hexane; \(V_9 \) – (0.2-1.5%) volume concentration of carbon dioxide; \(V_{10} \) – (0.2-1.3%) volume concentration of nitrogen; \(V_{11} \) – (0-0.3%) volume concentration of oxygen.

\(m_i \) – molar mass of components, kg/mol: \(m_1 = 16.04 \) - molar mass of methane; \(m_2 = 30.07 \) - molar mass of ethane; \(m_3 = 44.09 \) - molar mass of propane; \(m_4 = 58.12 \) - molar mass of i-butane; \(m_5 = 58.12 \) - molar mass of n-butane; \(m_6 = 72 \) - molar mass of n-pentane; \(m_7 = 72.15 \) - molar mass of n-pentane; \(m_8 = 86.18 \) - molar mass of hexane; \(m_9 = 44.01 \) - molar mass of non-acid gas; \(m_{10} = 28.01 \) - molar mass of; \(m_{11} = 31.99 \) - molar mass of acid.

Enthalpy drop in the process of pressure drop in gas:

\[H = \frac{k}{k-1} \cdot z \cdot R \cdot T \cdot \left(1 - \frac{P_{\text{ent}}}{P_{\text{ent}}} \right)^{\frac{k-1}{k}} = \]

\[= \frac{1.3}{1.3 - 1} \cdot 0.9933 \cdot 0.523 \cdot 313 \cdot \left(1 - \frac{0.15}{0.6} \right)^{1.8-1} = 193.1 \text{ kJ/kg} \]

where \(k \) is the volume index of the adiabatic;

\(R \) – individual gas constant, J/kg·K;

\(z \) – compressibility coefficient of the natural gas mixture;

\(z = 0.9933; \)

\(T \) – temperature of the gas before the expander, °K;

where \(T = t + 273; t \) – °C;
T = t + 273 = 40 + 273 = 313 °C.

\(P_{\text{ent}} \) – gas pressure in front of the expander, MPa;
\(P_{\text{ent}} \) – gas pressure after the expander, MPa.

Volumetric adiabatic index:

\[
k_v = \frac{\sum k_{vi} \cdot V_i}{100},
\]

where \(V_i \) – volume concentrations of gas components, %.
\(k_{vi} \) – volume index of adiabate:
- \(k_{U1} = 1,3144 \) – volume index of methane adiabate;
- \(k_{U2} = 1,1405 \) – volume index of ethane adiabate;
- \(k_{U3} = 1,2181 \) – volume index of propane adiabate;
- \(k_{U4} = 1,4192 \) – volume index of nitrogen adiabate;
- \(k_{U5} = 1,2232 \) – volume index of carbon dioxide adiabate;
- \(k_{U6} = 1.4085 \) is the volume index of oxygen adiabatic.

Mass flow rate of natural gas mixture through GDP, kg/s:

\[
G = \frac{Q_k \rho_{\text{mxt}}}{3600} = \frac{1125 \cdot 0.709}{3600} = 0.222 \text{ kg/s}
\]

where \(Q_k \) is the volume flow rate of gas, m³/h;
\(\rho_{\text{mxt}} \) is the density of the gas mixture, kg/m³.

\[
Q_k = \frac{Q}{30 \cdot 24} = \frac{810000}{30 \cdot 24} = 1125 \text{ m}^3/\text{h}
\]

The nominal available power that can be obtained in the EGU:

\[
N_{\text{EGU}} = G \cdot H \cdot \eta = 0.222 \cdot 193.3 \cdot 0.7802 = 33.45 \text{ kWt}
\]

where \(H \) is the enthalpy difference, kJ/kg;
\(\eta \) – the total efficiency of the EGU:

\[
\eta = \eta_{\text{gen}} \cdot \eta_{\text{mech}} \cdot \eta_0 = 0.94 \cdot 1 \cdot 0.83 = 0.7802;
\]

where \(\eta_{\text{gen}} = 0.94; \eta_{\text{mech}} = 1; \eta_0 = 0.83. \)

Annual electricity generation EGU:

\[
W_{\text{EGU}} = N_{\text{EGU}} \cdot 24 \cdot T = 33.45 \cdot 24 \cdot 350 = 280980 \text{ kWt} \cdot \text{h/year}
\]

where \(T \) is the duration of the EGU operation in a year; \(T = 350 \) days.

Average annual tariff for purchased electricity \(C = 0.036 \text{ $/kWt} \)

Cost reduction: \(\Delta S = W_{\text{EGU}} \cdot C = 280980 \cdot 0.036 = 10115.28 \text{ $/year} \)

The results of theoretical and experimental calculation of the share of generated electricity supplied to the

AHPU power grid for heating gas at the inlet and outlet of the GDP are shown in Table 3.
Table 3. Verification results of calculation of theoretical and experimental data for the share of electricity supplied to the grid at a pressure ratio of 0.6/0.15 MPa.

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>Calculated data</th>
<th>Experimental data</th>
<th>% discrepancy of results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air heat pump installation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The heat that is received by the gas in the heat exchanger before the EGU: (Q_3 = G_g \cdot (h_4 - h_3)) kJ/s</td>
<td>13,1</td>
<td>12,9</td>
<td>-1,53</td>
</tr>
<tr>
<td>Air consumption in the air HPU: (G_{air} = \frac{Q_2}{(h_f - h_a) \eta_{he}}) kg/s</td>
<td>0,127</td>
<td>0,125</td>
<td>-1,57</td>
</tr>
<tr>
<td>Power consumed by the compressor drive: (N_5 = \frac{G_{air}(h_f - h_a)}{\eta_{em}}) kWt</td>
<td>15,72</td>
<td>16,21</td>
<td>+0,49</td>
</tr>
<tr>
<td>Expander-generator unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power generated by EGU, kWt: (N_2 = G_{air} \cdot \left(1 - \left(\frac{p_5}{p_4}\right)^{\frac{k}{k-1}}\right) \cdot \eta_{0i} \cdot \eta_{em})</td>
<td>23,77</td>
<td>23,43</td>
<td>-1,43</td>
</tr>
<tr>
<td>Gas temperature per EGU: (T_5 = T_4 \cdot \frac{z_4}{z_5} \cdot \left[\eta_{oi} \left(\frac{P_5}{P_4}\right)^{\frac{k}{k-1}} - 1\right] + 1) K</td>
<td>50,3</td>
<td>51,21</td>
<td>+1,81</td>
</tr>
<tr>
<td>The share of electricity generated in the network: (\alpha = \frac{N_2 - N_6}{N_2})</td>
<td>0,375</td>
<td>0,368</td>
<td>-1,86</td>
</tr>
</tbody>
</table>

Graphs representing the dependences of experimental calculations of the share of electricity produced, on the heating temperature of the gas mixture before the EGU and the amount of gas transported are shown in Fig. 4-9.

![Fig. 4. The relationship between the gas heating temperature before the EGU and the share of electricity supplied to the grid.](image-url)
Fig. 5. The relationship between the gas heating temperature and the generated EGU power.

Fig. 6. Dependence of the produced power of the installation on the gas consumption at different gas heating temperatures at the EGU inlet.

Fig. 7. The effect of gas flow at a heating temperature of 70 °C in front of the expander (theor./exp.) on the generated power of the EGU.
Fig. 8. The effect of gas flow at a heating temperature of 60 °C in front of the expander (theor./exp.) on the generated power of the EGU.

Fig. 9. The effect of gas flow at a heating temperature of 50 °C in front of the expander (theor./exp.) on the generated power of the EGU.

4 Conclusion

Thus, an assessment of the technical and economic efficiency of a fuel-free installation based on EGU was carried out, which allows reducing the consumption of electricity for own needs from the external network at the GDP of the “Navoi Concrete Complex” automobile gas filling compressor station by up to 70% with a production of 280 980 kWh/year and a payback period of 4 years.

References

