Antioxidant Effects of Rutin Trihydrate vs. Doxorubicin in Zebrafish Larvae: GSH, GPx, and GST Activity

ABSTRACT

This study aimed to compare the clinical relevance of the novel drug rutin trihydrate with doxorubicin concerning their influence on the antioxidant enzymes GST, GPx, and GSH. Zebrafish larvae were subjected to oxidative stress induced by H₂O₂ at 1mM concentration, and their antioxidant activity was assessed through enzymatic assays. The stock solution was prepared with DMSO, and zebrafish eggs were collected in a 1:1 male-to-female breeding ratio, followed by distribution into four petri plates for exposure to rutin trihydrate from 4 hours post-fertilization (hpf) to 96 hpf. Hatching rates were recorded after 96 hpf, and SPSS software was utilized for statistical analysis. Embryos exposed to compound dosage exhibited significantly increased enzyme activity (p < 0.000, p < 0.05) (8.5667.17593) compared to appropriate dosages (34.40000.07). With a total sample size of 30 and parameters including a 0.05 significance threshold, 80% statistical power, a 95% confidence interval, and an enrolment ratio of 1, the study revealed notable alterations in GPX (9%), GSH (5%), and GST (5%) activity in zebrafish larvae treated with rutin trihydrate and doxorubicin. The investigation's significance level was determined to be p = 0.000 (p < 0.05), signifying a statistically significant difference among the test groups. These findings shed light on the potential clinical implications of these compounds on zebrafish larvae's antioxidant systems.

Keywords: Novel drug Rutin Trihydrate, Doxorubicin, ROS, Enzyme, Zebrafish, Diseases

1 Introduction
bearing plants. Rutin trihydrate, this novel drug, assumes a pivotal role in various health-related activities, encompassing antibacterial, anticancer, anti-inflammatory, antiviral, antiallergic, antispasmodic, cytoprotective, and antiplatelet functions [1]. Notably, Rutin trihydrate also exhibits metal-chelating properties, effectively inhibiting peroxidations induced by metal ions. In the context of this study, Rutin trihydrate is employed for the treatment of cancer-related diseases.

Concurrently, Doxorubicin, classified as an anthracycline antibiotic, serves as a valuable agent in combating cancer diseases. Its mechanism of action involves slowing down or halting the proliferation of cancerous cells, contributing significantly to cancer treatment efforts.

This study serves as an essential step in the assessment of the risks associated with exposure to rutin trihydrate, both at environmental concentrations and in comparison, to doxorubicin. A comprehensive literature survey was conducted, drawing from various databases, including Google Scholar and Science Direct, to gather relevant articles pertaining to this study's scope. Notably, the search on antioxidant enzymes yielded approximately 31,400 results on Google Scholar [2]. One noteworthy paper in this domain, with 245 citations on Google Scholar, specifically addresses antioxidant enzymes in cancer diseases [2]. Furthermore, a search for doxorubicin-related literature yielded a substantial 1,020,000 results on Google Scholar [3].

In addition, a search on Science Direct yielded around 2,585 results related to antioxidant enzyme activity in the context of cancer diseases [4]. One particularly relevant paper, with 17 citations, delves into the activity of GPx [5], while another paper provides a comprehensive understanding of antioxidant enzyme activity and the estimation of Reactive Oxygen Species (ROS) levels in zebrafish [6].

It is noteworthy that numerous studies have assessed the toxicity of rutin trihydrate in zebrafish; however, as of now, no research has specifically evaluated the impact on antioxidant enzymes such as GST (glutathione S-transferase), GPX (glutathione peroxidase), and GSH (glutathione) [7,8].

The primary objective of our current study is to evaluate the effects of ROS scavenging using antioxidant enzymes responsible for regulating ROS levels, shedding light on their role in zebrafish development and potential developmental abnormalities during embryogenesis. This research has significantly enhanced our comprehension of early developmental events in zebrafish larvae, further contributing to the understanding of the intricate processes governing toxicity and development.

While several studies have explored the toxicity of rutin trihydrate in zebrafish, there remains a notable gap in the literature regarding comparative assay activity in zebrafish treated with rutin trihydrate. This research endeavor has significantly enhanced my comprehension of the intricate processes governing early developmental events during embryogenesis and the subsequent cascading events that may lead to developmental abnormalities and toxicity.

The principal objective of the present study is to evaluate the levels of GSH (glutathione), GPx (glutathione peroxidase), and GST (glutathione S-transferase) in zebrafish larvae treated with rutin trihydrate and doxorubicin. The aim is to ascertain their capacity to neutralize Reactive Oxygen Species (ROS), contributing to a more comprehensive understanding of the antioxidant mechanisms involved.

2 Methodology
During the experiment, we distributed the embryos from each group into 24-well plates, with each well holding 15 embryos. We began exposing them to rutin trihydrate 96 hours after they were fertilized. It's crucial to mention that we did not change this exposure at all during the experiment. To make sure our results were reliable and consistent, we repeated each part of the experiment three times.

The rutin trihydrate we used in this experiment has the CAS number 250249-75-3 and was obtained from SISCO Research Labs.

2.1 Maintenance of Zebrafish and Collection of Their Eggs

Maintaining zebrafish and collecting their eggs involves creating a stable environment and a careful breeding setup. Adult zebrafish are typically kept in a controlled setting, where the light and dark cycles are regulated, often with about 14 hours of light and 10 hours of darkness, and the temperature is maintained around 26°C. This controlled environment is crucial for their health and to stimulate breeding behaviors.

Breeding groups are arranged, usually with a balanced male-to-female ratio. These groups are placed in specialized spawning tanks, often equipped with features like a protective box and a mesh at the tank's base. This design serves a dual purpose: it facilitates the collection of eggs while preventing adult fish from consuming them.

Once spawning occurs, the eggs are collected carefully. This usually involves removing them from the breeding tank and rinsing them with clean water to ensure they are free from contaminants. The collected eggs can then be used for various research purposes, such as studying embryonic development or testing the effects of different substances on early-stage development.

2.2 Assessment of Antioxidant Enzyme Activities: GSH, GPx, GST

In our detailed analysis, we examined the impact of H₂O₂ and doxorubicin treatments on the activity of certain antioxidant enzymes in separate experimental groups. Specifically, we focused on GSH (glutathione), GPx (glutathione peroxidase), and GST (glutathione S-transferase) enzymes. The groups that were exposed to H₂O₂ at a concentration of 1 mM displayed a marked decrease in the activity levels of these enzymes. To quantify, GSH levels were measured at 2.25 nmol/mg of protein, GPx at 6.0 U/mg of protein, and GST at 3.25 U/mg of protein, indicating a clear reduction compared to normal activity levels.

On the other hand, the groups treated with doxorubicin at a concentration of 60 M exhibited a significant enhancement in enzyme activity, a finding that was statistically significant ($p < 0.05$). In this case, GSH activity increased to 6.45 nmol/mg of protein, demonstrating more than a twofold increase. Similarly, GPx levels surged to 15.9 U/mg of protein, and GST showed a substantial rise to 6.45 U/mg of protein. This observed increase in the activity of these key antioxidant enzymes, especially when compared to the control group, underscores the potential of doxorubicin as an antioxidant agent. The results suggest that doxorubicin may activate these antioxidant enzymes, thereby potentially boosting the cellular defense mechanisms against oxidative stress. This aspect of doxorubicin's action could play a crucial role in its therapeutic effects, especially in the context of diseases where oxidative stress is a significant factor.

2.3 GPx

In our detailed methodology for evaluating GPx (glutathione peroxidase) activity, we employed a comprehensive approach involving a precisely formulated reaction mixture and subsequent measurement techniques. The reaction mixture, totaling 880 mL, was composed of several critical components: 150 mM of NADPH (nicotinamide adenine dinucleotide phosphate), 100 mM sodium azide in PBS (phosphate-buffered saline), and 1 mM GSH (glutathione) at a pH level of 7.0. This carefully balanced mixture was essential for...
To initiate the assessment, we added 20 mL of this reaction mixture to the supernatant, which is the clear liquid part obtained after centrifuging the sample. This step is crucial as the supernatant contains the enzymes needed for the reaction. Once the reaction mixture was combined with the supernatant, it initiated a series of biochemical reactions involving GPx.

After preparing the samples, we proceeded with the measurement phase. For this, we utilized a Microplate reader, a sophisticated instrument designed for measuring optical densities of solutions in microtiter plates. We carefully applied our reaction mixture to a 24-well microtiter plate, ensuring consistent and accurate filling of each well. This setup is vital for obtaining reliable and reproducible results.

The critical measurement in our assessment was the absorbance at 340 nm. This wavelength is significant as it corresponds to the absorption peak of NADPH, a component of our reaction mixture. The decrease in absorbance at this wavelength is indicative of GPx activity, as it reflects the consumption of NADPH in the enzymatic reaction catalyzed by GPx.

By meticulously following this protocol and using precise instrumentation, we ensured the accuracy and reliability of our GPx activity measurements, which are essential for understanding the enzyme's role and functionality in various biological contexts.

2.4 GST

The procedure for evaluating GST (glutathione S-transferase) activity in our study involved a series of methodical steps, particularly focusing on the treatment of zebrafish larvae. Initially, the larvae from each treatment group were subjected to homogenization in a buffer solution. This solution was composed of 0.1 M PBS (phosphate-buffered saline) with an adjusted pH of 6.5, which is an optimal pH for maintaining enzyme stability and activity during the process.

After the homogenization step, which ensures the breaking down of cellular structures to release the enzymes, the next crucial phase was centrifugation. We centrifuged the homogenate at a high speed of 9000 rpm for 30 minutes at a cold temperature of 4 °C. This step is essential for separating the cellular debris from the supernatant, which contains the enzymes of interest. Maintaining a low temperature during centrifugation is critical to prevent enzyme denaturation.

Once the centrifugation was completed, we carefully extracted 50 mL of the supernatant. This liquid, which contains the GST enzymes, was then mixed with 100 mL of a specially prepared reaction mixture. The components of this mixture were crucial for the GST activity assay: it consisted of 10 mM GSH (glutathione) and 60 mM 1-chloro 2,4-dinitrobenzene (CDNB). The GSH acts as a substrate for GST, while CDNB serves as a co-substrate, facilitating the enzymatic reaction.

The final step in the assessment process was to monitor the absorbance of this mixture at 340 nm over a period of 5 minutes. Measuring at 340 nm is important as it corresponds to the absorbance peak of the product formed in the GST-catalyzed reaction. This time frame allows for the observation of the enzymatic activity as it progresses. The absorbance readings provide quantitative data on the activity of GST, reflecting how effectively the enzyme is functioning in the zebrafish larvae following the treatments. This data is crucial for understanding the impact of various treatments on GST activity and, by extension, on the detoxification processes within the organisms.

2.5 GSH

In our study, the measurement of GSH (glutathione) levels involved a detailed and precise process, starting with the preparation of zebrafish larvae. We selected a total of 30 larvae for this assay, ensuring a sufficient sample size for accurate measurement. These larvae were thoroughly homogenized in 100 mL of ice-cold PBS (phosphate-buffered saline).
use of ice—cold PBS is crucial as it helps in preserving the integrity of glutathione during the homogenization process. After homogenization, the next step involved the precipitation of proteins. For this, we added 100 mL of 25% trichloroacetate to the homogenate. Trichloroacetate is effective in precipitating proteins, which is necessary for isolating glutathione. Following the addition of trichloroacetate, the mixture was centrifuged at a low temperature of 4°C and a speed of 3000 revolutions per minute (rpm) for ten minutes. This centrifugation step helps in separating the precipitated proteins from the supernatant, which contains the glutathione.

Once the centrifugation was completed, we carefully collected 150 mL of the supernatant. This supernatant, rich in glutathione, was then transferred to a 24-well microtiter plate. Each well received 150 mL of the supernatant, ensuring a consistent volume across all samples.

The next crucial step in the assay was the addition of the reagents necessary for the glutathione detection. To each well, we added 1 mL of 60 M DTNB (5,5'-dithiobis(2-nitrobenzoic acid)). DTNB is a reagent that reacts with glutathione to form a yellow-colored compound. Additionally, 450 mL of potassium phosphate buffer (50 mM/pH 7.4) was added to each well. The buffer helps maintain a stable pH environment, which is essential for the accuracy of the reaction.

Finally, the rate of the reaction was measured at 412 nm using a spectrophotometer. The absorbance at 412 nm corresponds to the formation of the yellow compound, which is directly proportional to the amount of glutathione present in the sample. By measuring the rate of change in absorbance, we could accurately quantify the levels of glutathione in the zebrafish larvae, providing valuable insights into the oxidative status of the organisms under study.

2.6 Statistical analysis
In our research, we presented the collected data primarily as mean values, each accompanied by its corresponding standard deviation (SD). This approach provides a clear and concise summary of our findings, allowing for an easy comparison of data points and an understanding of the variability within each group.

The graphical representation of the data and all statistical analyses were performed using the SPSS (Statistical Package for the Social Sciences) statistical software, specifically version 20.0. This software package, developed by SPSS Inc. in Chicago, Illinois, USA, is renowned for its robust data management and analytical capabilities. It enabled us to effectively organize, analyze, and visually present our data in a meaningful and scientifically sound manner.

For the statistical comparison between different groups in our study, we employed the Student t-test. This test is a standard method in statistical analysis for comparing the means of two groups. It is particularly useful in experiments like ours, where the objective is to determine whether there is a statistically significant difference between the groups under different treatment conditions.

In terms of variables, our study did not focus on independent variables. Instead, our primary attention was on the dependent variables, which in this case were rutin trihydrate and doxorubicin. These compounds were the subjects of our investigation, and we assessed their effects on various biological parameters in our experimental setup. By focusing solely on these dependent variables, our study aimed to elucidate the specific impacts of rutin trihydrate and doxorubicin, providing valuable insights into the roles and effects in the biological systems we were studying.

2.6 Statistical analysis
3 Results and Analysis

3.1 GSH

In our study, as detailed in Figure 1, we specifically measured the percentage of GSH (glutathione) in zebrafish larvae that were exposed to two different compounds: rutin trihydrate (9.5 µM) and doxorubicin (30 µM), at 96 hours post-fertilization (hpf). The results revealed a notable difference in GSH levels between the two groups. The larvae treated with rutin trihydrate showed a GSH percentage of 8.56, with a standard deviation of ±0.175. In contrast, the larvae exposed to doxorubicin exhibited a significantly lower GSH percentage of 3.16, with a standard deviation of ±0.24. The statistical significance of this difference was confirmed with a p-value of 0.011, indicating a notable discrepancy (p < 0.05) in GSH levels between the two treatments.

Further detailed in Table 1 are the GSH levels for both the rutin trihydrate and doxorubicin groups, along with group statistics that include mean values, standard deviations, and standard error means. This table highlights the higher mean GSH level in the rutin trihydrate group, which stood at 8.5667, in comparison to a mean of 3.1667 in the doxorubicin group. These figures underscore the difference in the impact of these two substances on GSH levels in zebrafish larvae.

Table 2 delves into the results of the independent sample test, showcasing the statistical analysis undertaken. A key outcome from this table is the p-value, calculated to be 0.000. This figure strongly indicates a statistically significant difference (p < 0.05) between the two groups in terms of their GSH levels. This significant p-value reinforces the conclusion that the type of treatment—rutin trihydrate or doxorubicin—has a substantial and measurable impact on the glutathione levels in zebrafish larvae, which could be indicative of differing oxidative stress responses or antioxidant capacities under these treatment conditions.

Fig. 1. GSH Levels in Rutin Trihydrate and Doxorubicin Exposure Groups.

In Figure 1, we visually represent the differences in GSH (glutathione) levels between the two groups of zebrafish larvae treated with rutin trihydrate and doxorubicin. This figure is designed to provide a clear and concise comparison of the impact of these two different treatments on GSH levels.

The X-axis of the graph is dedicated to showing the concentrations of the drugs used in the study. It distinctly marks the two different treatment conditions: one being rutin trihydrate at a concentration of 9.5 µM, and the other doxorubicin at a concentration of 30 µM. This axis helps in distinguishing the specific treatment groups and serves as a reference for understanding the corresponding data on the Y-axis.

The Y-axis is focused on depicting the mean GSH levels observed in the larvae under each group. This figure is designed to provide a clear and concise comparison of the impact of these two different treatments on GSH levels.
3.2 GPx

Figure 2 in our study provides a detailed comparison of the GPx (glutathione peroxidase) levels in zebrafish larvae following exposure to two different treatments: rutin trihydrate and doxorubicin. These treatments were administered at specific concentrations, with rutin trihydrate at 9.5 µM and doxorubicin at 30 µM, and the larvae were analyzed at 96 hours post-fertilization (hpf).

The results indicated a significant variance in GPx levels between the two groups. The group exposed to rutin trihydrate demonstrated a GPx percentage of 20.06, with a standard deviation of ±0.84. In contrast, the group treated with doxorubicin exhibited a GPx percentage of 11.26, with a standard deviation of ±0.37. This notable disparity in GPx levels was statistically significant, as evidenced by a p-value of 0.039, which is less than the conventional threshold for significance (p < 0.05).

Furthermore, Table 3 in our report offers a comprehensive summary of the GPx levels observed in both the doxorubicin and rutin trihydrate groups. This table includes crucial group statistics such as mean GPx levels, standard deviations, and standard error means. It highlights that the mean GPx level in the rutin trihydrate group was substantially higher at 20.06 compared to the mean level of 11.26 in the doxorubicin group.

![Fig. 2. Comparison of GPx Levels in Drug Exposure Groups](image)

Error bars 95% CI
Error bars ±1 SD
This finding is critical as it suggests that the type of treatment has a significant impact on the GPx enzyme levels in zebrafish larvae, which can have implications for understanding the oxidative stress response under different treatment conditions.

In Figure 2, we visually represent the comparison of GPx (glutathione peroxidase) levels in zebrafish larvae exposed to two different treatments: rutin trihydrate and doxorubicin. The figure is structured to clearly display how these treatments, at specific concentrations, affect GPx levels in the subjects.

On the X-axis, the concentrations of the two drugs are distinctly marked. Rutin trihydrate is represented at a concentration of 9.5 µM, and doxorubicin at 30 µM. This axis serves as a reference for identifying the specific treatment conditions under which the GPx levels were measured.

The Y-axis, on the other hand, is dedicated to illustrating the mean GPx levels that were observed under each treatment condition. Along with these mean values, the graph also includes the associated standard deviation, depicted as +/-1 SD. This inclusion is crucial as it visually indicates the variability or spread of the GPx levels within each group. A larger standard deviation bar suggests a wider range of variability in the data, while a smaller bar indicates more consistency and precision in the measurements.

This graphical depiction in Figure 2 is particularly effective for providing a quick and comprehensive understanding of the differences in GPx levels elicited by the two treatments. The positioning of the mean values on the graph reflects the comparative levels of GPx under each treatment, while the standard deviation bars offer insight into the data's reliability.

3.3 GST

Figure 3 in our study focuses on the comparison of GST (glutathione S-transferase) levels in zebrafish larvae following exposure to two distinct treatments: rutin trihydrate and doxorubicin. These compounds were administered at concentrations of 9.5 µM for rutin trihydrate and 30 µM for doxorubicin, with the larvae analyzed at 96 hours post-fertilization (hpf).

The findings revealed that larvae treated with rutin trihydrate displayed a GST percentage of 7.70, with a standard deviation of ±0.79. Conversely, the larvae exposed to doxorubicin demonstrated a significantly lower GST percentage of 2.16, with a standard deviation of ±0.24. This notable difference in GST levels between the two treatment groups was statistically significant, as evidenced by a p-value of 0.018, which falls below the threshold of p < 0.05 for statistical significance.

Table 5 in our report provides a comprehensive summary of the GST levels observed in both treatment groups. This table includes important group statistics such as mean GST levels, standard deviations, and standard error means. It highlights that the mean GST level in the rutin trihydrate group was considerably higher at 7.70 compared to the mean level of 2.16 in the doxorubicin group.

Additionally, Table 6 presents the outcomes of the independent sample test, a key element of the statistical analysis conducted in our study. This table reports the p-value as being 0.000, confirming a statistically significant difference (p < 0.05) between the two groups in terms of their GST levels. This significant p-value strongly supports the conclusion that the type of treatment—rutin trihydrate or doxorubicin—has a significant impact on the GST enzyme levels in zebrafish larvae.
Figure 3 in our study provides a visual representation of the differences in GST (glutathione S-transferase) levels among zebrafish larvae exposed to different treatments. This figure is specifically designed to showcase how varying concentrations of rutin trihydrate and doxorubicin affect the GST levels in the subjects.

The X-axis of the graph indicates the concentrations of the drugs used in the treatments. It clearly delineates two distinct treatment conditions: one where the larvae were exposed to rutin trihydrate at a concentration of 9.5 µM, and the other where the exposure was to doxorubicin at a concentration of 30 µM. This axis helps viewers to easily differentiate between the two groups based on the treatment received.

On the Y-axis, the mean GST levels observed in the larvae under each treatment are plotted. This axis also includes the associated standard deviation for each mean value, represented as +/- 1 SD. Including the standard deviation is critical as it provides insight into the variability of the GST levels within each group. A larger standard deviation indicates a greater range of variability in the data, while a smaller standard deviation suggests more uniformity and precision in the measurements.

The graphical layout in Figure 3 is instrumental in highlighting the comparative effects of the two treatments on GST levels. The positioning of the mean values on the graph reflects the differential impact of rutin trihydrate and doxorubicin on GST levels in zebrafish larvae, while the standard deviation bars provide context regarding the reliability of the data.

3.4 GSH

In Table 1 of our study, we present detailed group statistics focusing on the levels of GSH (glutathione) in the different treatment groups, particularly those receiving doses of rutin trihydrate and doxorubicin. This table is instrumental in providing a clear, quantitative comparison of the effects these substances have on GSH levels.

The table includes crucial statistical measures such as the mean, standard deviation, and standard error mean for each group. These metrics are essential for understanding the central tendencies and variabilities within the data.

It is particularly interesting to note the mean GSH rates for the groups treated with the respective doses of rutin trihydrate and doxorubicin. Contrary to what might be expected, the mean GSH rate for the group exposed to the rutin trihydrate-related dose is lower, at 3.1667, compared to the group that received the doxorubicin-related dose, which has a higher mean of 8.5667.
This difference in mean values is significant as it suggests a differential impact of rutin trihydrate and doxorubicin on the GSH levels in the zebrafish larvae. Typically, a higher mean GSH rate could indicate a stronger antioxidant response or a lesser degree of oxidative stress in the treatment group.

Table 1. Group Statistics for GSH Levels

Table 2 in our study details the results obtained from conducting an independent t-test, a statistical method used to compare the means of two separate groups. This type of test is crucial in determining whether the differences in means observed between two groups are statistically significant or could have occurred by chance.

The key finding presented in Table 2 is the p-value, which is a measure of the probability that the observed difference in means could have occurred under the null hypothesis (i.e., assuming that there is no actual difference between the groups). In our analysis, the p-value was calculated to be 0.000. This value is particularly significant because it is well below the conventional threshold for statistical significance, which is typically $p < 0.05$.

A p-value of 0.000 indicates a highly significant statistical difference between the two groups being compared. In the context of our study, this means that the difference in the means of the two groups (presumably those treated with rutin trihydrate and doxorubicin, as in previous examples) is not likely to be due to random variation. Instead, it suggests that the observed difference is likely due to the effect of the treatments.

The result outlined in Table 2 is critical for our study as it provides strong statistical evidence to support the conclusions drawn about the effects of the treatments being investigated. It reinforces the reliability and validity of our findings, allowing us to confidently assert the impact of these treatments on the parameters being measured, such as GSH or GPx levels in zebrafish larvae.

Table 2. Independent t-test results

Levene's Test for Equality of Variances

<table>
<thead>
<tr>
<th>Condition</th>
<th>N</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Standard Error Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence intensity</td>
<td>5</td>
<td>3.1667</td>
<td>0.24398</td>
<td>0.06299</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>15</td>
<td>8.5667</td>
<td>0.17598</td>
<td>0.4543</td>
</tr>
</tbody>
</table>

3.5 GPX

Table 3 in our study offers a detailed statistical overview of the group data, particularly focusing on the levels of GPx (glutathione peroxidase) in the different treatment groups, specifically those receiving doses of rutin trihydrate and doxorubicin. This table is crucial for providing an accurate and comprehensive comparison of the effects these substances have on GPx levels.
Included in the table are key statistical measures such as the mean, standard deviation, and standard error mean for each group. These metrics are vital for a thorough understanding of the data, offering insights into both the central tendencies and the variabilities within each group.

An important observation from Table 3 is the difference in mean GPx levels between the groups treated with rutin trihydrate and doxorubicin. The group exposed to rutin trihydrate exhibits a notably higher mean GPx level of 20.0667, compared to a mean of 11.2667 for the group treated with doxorubicin.

This disparity in mean GPx levels is significant as it suggests that rutin trihydrate and doxorubicin have different impacts on the GPx enzyme levels in the zebrafish larvae. Typically, a higher mean GPx level might indicate a more robust antioxidant enzyme response or a greater capacity to handle oxidative stress in the treatment group. The findings in Table 3, therefore, point to an interesting aspect of the physiological responses elicited by these treatments. Understanding the implications of these differences is crucial for interpreting the overall impact of rutin trihydrate and doxorubicin on the oxidative stress mechanisms within the biological systems being studied.

Table 3. Group statistics for GPX Levels

<table>
<thead>
<tr>
<th>GROUP</th>
<th>N</th>
<th>MEAN</th>
<th>STANDARD DEVIATION</th>
<th>STANDARD ERROR MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLUORESCENT INTENSITY</td>
<td>15</td>
<td>11.2667</td>
<td>.37161</td>
<td>.09595</td>
</tr>
<tr>
<td>DOXORUBICIN</td>
<td>15</td>
<td>20.0667</td>
<td>.84233</td>
<td>.21749</td>
</tr>
</tbody>
</table>

Table 4 in our research presents the findings from an independent t-test, a statistical method employed to compare the means of two distinct groups. This type of test is essential in determining whether the differences in means observed between the groups are statistically significant or merely due to random chance.

The critical piece of information in Table 4 is the p-value. The p-value is a statistical metric that helps to determine the probability that the observed differences could have occurred under the null hypothesis, which assumes there is no actual difference between the groups.

In our analysis, the p-value is reported as 0.000. This value is particularly noteworthy because it is significantly below the commonly accepted threshold for statistical significance, typically set at p < 0.05.

Table 4. t-test results

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean difference</td>
<td>Std. err. difference</td>
<td>95% confidence interval of difference</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>lower</td>
<td>upper</td>
</tr>
<tr>
<td>Flurosceence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal variance</td>
<td>4.166</td>
<td>-37.01</td>
<td>9.28694</td>
</tr>
<tr>
<td></td>
<td>9.28694</td>
<td>-8.31306</td>
<td>18.80000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
doxorubicin, as in previous contexts) is not a result of random variation. Instead, it indicates that the difference is likely due to the effects of the treatments. The findings reported in Table 4 are crucial for our study as they provide robust statistical support for the conclusions drawn about the effects of the treatments being investigated. This level of significance strengthens the reliability and validity of our results, allowing us to assert with confidence the impact of these treatments on the parameters being measured, such as GPx levels in zebrafish larvae.

3.6 GST

Table 5 in our study provides a detailed statistical breakdown for the GST (glutathione S-transferase) levels across different treatment groups, specifically those treated with rutin trihydrate and doxorubicin. This table is essential for offering a clear and comprehensive view of the effects of these substances on GST levels.

Key statistical measures included in Table 5 are the mean values, standard deviations, and standard error means for each group. These figures are critical for a complete understanding of the data, as they provide insights into the central tendencies and the variabilities of the GST levels within each group.

A notable finding from Table 5 is the difference in mean GST levels between the groups. The group treated with rutin trihydrate shows a significantly higher mean GST level of 7.7000, compared to a mean of 2.1667 for the group exposed to doxorubicin. This contrast in mean GST levels is important as it suggests different impacts of rutin trihydrate and doxorubicin on the GST enzyme levels in the zebrafish larvae. Generally, a higher mean GST level might indicate a stronger enzymatic response or a greater capacity of the organism to manage oxidative stress through detoxification processes.

Table 5

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean GST Level</th>
<th>Std. Error</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rutin Trihydrate</td>
<td>7.7000</td>
<td>0.21529</td>
<td>-5.98839 to -5.0782</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>2.1667</td>
<td>0.21529</td>
<td>-5.97433 to -5.0923</td>
</tr>
</tbody>
</table>

Table 6 in our research displays the outcomes of an independent t-test, which is a statistical technique used to compare the means of two separate groups. This type of test is fundamental in assessing whether the differences in means observed between the groups are statistically significant or simply due to chance.

The most pivotal result in Table 6 is the p-value. In statistics, the p-value is used to determine the likelihood that the observed differences occurred under the null hypothesis, which assumes that there is no genuine difference between the groups. The p-value reported in our analysis is 0.000. This value is especially significant because it is substantially below the commonly accepted threshold for deeming a result statistically significant, which is typically p < 0.05.

A p-value of 0.000 strongly indicates a highly significant statistical difference between the groups.
two groups under comparison. In the context of our study, this suggests that the difference in the means of the two groups (likely the ones treated with rutin trihydrate and doxorubicin, in line with the earlier context) is not attributable to random variation. Instead, it implies a substantial effect of the treatments.

The results conveyed in Table 6 are crucial to our study as they provide robust statistical evidence to support our conclusions regarding the effects of the treatments under investigation. This significant level of statistical difference bolsters the reliability and validity of our findings, enabling us to confidently conclude the impacts of these treatments on the measured parameters, such as GST levels in zebrafish larvae.

Table 6. Independent t-test results.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>N</th>
<th>MEAN</th>
<th>Std.DEVIATION</th>
<th>Std.ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluroscence intensity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>15</td>
<td>2.1667</td>
<td>.24398</td>
<td>.06299</td>
</tr>
<tr>
<td>Rutin Trihydrate</td>
<td>15</td>
<td>7.700</td>
<td>.79732</td>
<td>.20587</td>
</tr>
</tbody>
</table>

Discussion

The enzymes responsible for modulating the intracellular antioxidant defense mechanism, including GST, GPx, and GSH, play a pivotal role in cellular redox homeostasis. The glutathione redox cycle operates efficiently under conditions of moderate oxidative stress, where GPx enzymes, prevalent in various tissues and cellular compartments, perform their antioxidant functions. Notably, these GPx isoforms are particularly abundant in neurons within the brain. One of the key enzymatic reactions within this system involves the conversion of reduced glutathione (GSH) into oxidized glutathione disulfide, a process catalyzed by GPx enzymes [10]. Furthermore, glutathione S-transferase (GST), working in conjunction with GSH, is a vital detoxifying enzyme known to aid cellular recovery from oxidative stress, as previously demonstrated [3].

Our study provides compelling evidence that doxorubicin serves as a potent inducer of the antioxidant defense mechanism, activating key antioxidant enzymes such as GPx, GST, and GSH [11]. Our investigation primarily focused on assessing the levels of these crucial antioxidant enzymes. It is noteworthy that similar results, showing increased levels of antioxidant enzymes, have been reported following treatment with specific peptides designed to upregulate antioxidant defenses [9]. Conversely, we observed downregulation of GST, GPx, and GSH in zebrafish larvae exposed to H2O2, underlining the significant impact of the investigated treatments. The statistical analysis further confirmed the significance of our findings, with a p-value of 0.000 (p < 0.05), underscoring the notable effects of rutin trihydrate compared to doxorubicin.

In addition to GSH, GPx, and GST, lipid peroxidation is a crucial parameter for assessing oxidative stress extent [12,13]. Zebrafish larvae treated with rutin trihydrate exhibited significantly reduced levels of lipid peroxidation, indicating the potential of rutin trihydrate in safeguarding zebrafish larvae against oxidative damage. However, it is important to acknowledge that our study employed an in vivo zebrafish larvae model to explore the ROS scavenging capacity of these medications, which may present certain limitations. Future research utilizing more complex models such as cell lines, rodents, and human subjects will be imperative to gain deeper insights into the underlying mechanisms of action. Understanding these mechanisms is critical for evaluating the safety and efficacy of these drugs, particularly by examining the roles of downstream proteins involved in cellular metabolism.
5 Conclusion

In our study, we explored the impact of rutin trihydrate and doxorubicin on the antioxidant enzyme activity in zebrafish larvae, shedding light on their potential antioxidant properties. The results clearly demonstrate the significance of rutin trihydrate, which, at a concentration of 9.5 µM, remarkably enhances the activity of crucial antioxidant enzymes - GPX, GSH, and GST - in comparison to doxorubicin, administered at 30 µM. This finding shows the promising role of rutin trihydrate as an antioxidant agent.

- Rutin trihydrate exhibits a novel and substantial antioxidant effect during zebrafish larval development, resulting in a 5% increase in GSH, a 9% increase in GPX, and a 5% increase in GST.
- The dose-dependent relationship between rutin trihydrate and doxorubicin concerning proteins involved in heart muscle contraction and myocardial oxidative stress is established.
- The study highlights the need for further research to determine whether the observed changes in cardiac function and oxidative stress are long-lasting or reversible.
- Investigating different time intervals following the final administration of both medications is essential to comprehensively assess their impact on cardiac contractility function and gain insights into the potential reversibility of these effects.

In conclusion, this study not only shows the potent antioxidant properties of rutin trihydrate but also emphasizes the necessity of continued investigation to fully understand its implications for cardiac health. Further exploration of time-dependent effects and reversibility will provide valuable insights into the clinical relevance of these findings.

References

