The theoretical basis for the development of a new assortment of costume fabrics of various compositions

Dilfuza Kazakova1*, Sanovar Khamrayeva2, and Zulfiya Bekmuratova2

1Bukhara Engineering-Technological Institute, Bukhara, Uzbekistan
2Tashkent Institute of Textile and Light Industry, Tashkent, Uzbekistan

Abstract. The article covers the results of research conducted on production of fabrics of various blended composition, such as local wool + cotton + polyester and cotton + cattail, in order to develop a new assortment of costume fabrics of various compositions. The production of such costume fabrics did not require the replacement of technological equipment, only the equipment was partially improved in order to settle the new assortment of production fabrics. The model for knitting costume fabrics of various compositions that gives positive results has been developed.

1 Introduction

The theoretical basis for the development of costume fabric of various composition by designing the structure of twill fabric 2/1 that is suitable for the development of costume fabric includes the following stages:

- development of the characteristics of device parameters and knitting models of costume fabrics of various composition;
- determining the mutual pressure of the threads through the geometric model of the fabric;
- determination of the calculated diameter of the threads in the fabric;
- determination of geometric density (dimensions);
- determination of the bending wave strength of the warp and weft threads;
- fabric with even surface
- determination of the filling coefficient of the fabric according to the warp and the weft;
- determination of the shrinkage of threads in the fabric;
- determination of the calculated surface density of the fabric.

Ecological ideas of society that create a hygienic demand for clothes, is the basis for bringing to the market new and not expensive products with different blended composition, that is, local wool + cotton + polyester and cotton + cattail fibers [1,2]. The main volume of such fabrics does not require replacement of technological equipment, only the development of a new assortment of production fabric and partial improvement of equipment.

*Corresponding author: dilfuza1978bmti@gmail.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
Fabrics of various composition and variants were produced at the “SOMMET” loom at the “Educational production enterprise of the society of the blind of Uzbekistan” [3,4].

2 Materials and methods

Fabrics were developed in 2 groups:
- warp thread is pure cotton and weft thread is a mixture of wool + cotton + polyester fibers;
- warp thread is pure cotton and weft thread is a mixture of cotton + cattail fibers [5,6].

In order to develop the fabric variants, 50 tack linear density warp and weft threads were used. Four variants of fabrics were obtained on the “SOMMET” loom using mixed threads for the production of costume fabrics (Table 1).

<table>
<thead>
<tr>
<th>Type of fibers, in percent</th>
<th>Variant 1</th>
<th>Variant 2</th>
<th>Variant 3</th>
<th>Variant 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>100</td>
<td>100</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>Polyester</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>Wool</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Cattail</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

A model of knitting costume fabric of various composition according to options was developed (Figure 1).
The characteristics of the fabrics to be developed for research are presented in Table 2 [7, 8].

The surface density of the fabric is understood as the mass corresponding to 1 m².
The surface density of costume fabric should not exceed 200-300 g/m².

3 Results and discussion

Basic standard methods were used to research the characteristics of the selected fabrics.
In the process of fabric production on the loom, the warp and weft threads are formed under mutual pressure. Therefore, using the formulas of professor E. A. Onikov, the value of the mutual pressure of the warp and weft threads in one element of serge 2/1 costume fabric was determined (Figure 2), when \(F_t = 30 \text{ kN} \), \(F_a = 15 \text{ kN} \), \(T_t = 50 \) tack, \(T_a = 50 \) tack [9].

\[
N_t = 2F_t \cdot \sin 27^0 = 2 \cdot 30 \cdot 0.4539 = 22.695; \\
N_a = 2F_a \cdot \sin 23^0 = 2 \cdot 15 \cdot 0.390 = 11.7
\]

The distance between the centers of the warp and weft threads (geometric density):
\[
l_t = l_a = d_o + d_y = 0.252 + 0.252 = 0.504 \text{ mm}
\]

Determining the calculated diameter of the fabric in terms of warp and weft threads:
\[
d = 0.0357 \sqrt{\frac{T}{\delta}} = 0.0357 \sqrt{\frac{50}{1}} = 0.252 \text{ mm}
\]

Table 2. Characteristics of the fabrics of blended composition.

<table>
<thead>
<tr>
<th>Variants</th>
<th>Fiber composition</th>
<th>Knitting</th>
<th>The number of threads in 10 cm</th>
<th>Linear density of threads, tack</th>
<th>Fabric surface density, mass of 1m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2/1</td>
<td>warp weft</td>
<td>warp weft</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Warp and weft threads are pure cotton</td>
<td>Serge</td>
<td>250 210</td>
<td>36 50</td>
<td>244.2</td>
</tr>
<tr>
<td>2</td>
<td>Warp thread - 100% cotton, weft thread - 70% cotton and 30% cattail</td>
<td>Serge 2/1</td>
<td>250 210</td>
<td>36 50</td>
<td>242.0</td>
</tr>
<tr>
<td>3</td>
<td>Warp thread - 100% cotton, weft thread - 30% cotton, 20% wool and 50% polyester</td>
<td>Serge 2/1</td>
<td>250 210</td>
<td>36 50</td>
<td>250.0</td>
</tr>
<tr>
<td>4</td>
<td>Warp – 100% cotton weft - 40% cotton, 20% wool and 40% polyester</td>
<td>Serge 2/1</td>
<td>250 210</td>
<td>36 50</td>
<td>248.3</td>
</tr>
</tbody>
</table>

Fig. 2. Geometric model of serge 2/1 knitting even surface costume fabric in warp direction.
One rapport knitting length on warp and weft in serge 2/1 knitting even surface costume fabric [10,11]:

\[l_{R_o} = \frac{R_o \cdot 10}{P_o} = \frac{3 \cdot 10}{250} = 1.2 \text{ mm}. \]
\[l_{R_y} = \frac{R'_y \cdot 10}{P'_o} = \frac{3 \cdot 10}{253} = 1.19 \text{ mm}. \]

In serge 2/1 knitting, the distance of the junctions, taking into account the coefficient \(b \) and the angle of rotation at the intersection of the warp and weft threads:

\[x_o = d_o + b_o/R_o = 0.252 + 0.115/3 = 0.122 \text{ mm}; \]
\[x_y = d_y + b_y/R_y = 0.252 + 0.011/3 = 0.088 \text{ mm}; \]
\[b_o = l_{R_o} \cdot l_o + d_o = 1.2 - 0.504 + 0.252 = 0.948 \text{ mm}; \]
\[b_y = l_{R_y} \cdot l_y + d_y = 1.19 - 0.504 + 0.252 = 0.938 \text{ mm}; \]

Fig. 3. Geometric model of serge 2/1 knitting even surface costume fabric in warp direction.

4 Conclusion

The final distance between the centers of the warp and weft threads in serge 2/1 knitting (Figure 3).

\[l_y = d_y + d_o + b_y/R_y = 0.504 + 0.948/3 = 0.481 \text{ mm}. \]
\[l_o = d_y + d_o + b_o/R_o = 0.504 + \frac{0.938}{3} = 0.480 \text{ mm}. \]

Bending wave heights of warp and weft threads in serge 2/1 knitting even surface costume fabric:

\[h_o = \frac{N_o t'_o}{2 \cdot P_o} = \frac{22.695 \cdot 0.81}{2 \cdot 30} = 0.306 \text{ mm}. \]
\[h_y = \frac{N_y t'_y}{2 \cdot P_y} = \frac{11.7 \cdot 0.80}{2 \cdot 15} = 0.312 \text{ mm}. \]

The filling coefficient of the fabric on warp and weft was determined by the following formula:

Let us determine the percentage of filling of the used fabric. The percentage of filling of the fabric with warp threads is determined as follows:

\[E'_T = P'_T \cdot d_p \cdot 100 = 2.50 \cdot 0.252 \cdot 100 = 63.0 \]

The percentage of filling of the fabric with weft threads is determined as follows:

\[E'_a = P'_a \cdot d_a \cdot 100 = 2.53 \cdot 0.252 \cdot 100 = 63.76 \]

where: \(d_a \) is the diameter of the weft thread.

The percentage of filling of the fabric threads is determined as follows:

\[E'_{TP} = E'_T + E'_a - \frac{E'_T \cdot E'_a}{100} = 63.0 + 63.76 - \frac{63.0 \cdot 63.76}{100} = 86.59 \]
where: $E_T^/'$ and $E_T^/'$ are the filling of existing and projected fabric with warp threads; $E_a^/'$ and $E_a^/'$ are the filling of existing and projected fabric with weft threads.

- the formula proposed by A.A. Martynova [9] was used to determine the shrinkage of threads in fabric.

Shrinkage of fabric by warp:

$$a_t = (1 - \frac{l_a \cdot t_{a,jp} + (R_a - t_{a,jp})d_{jp}}{K_{ht} \cdot t_{j,jp}(d_a + h_t^2 + (l_a/K_{ht} - d_a)^2 + (R_a - t_a)d_{jp})}) \times 100 = 9.8\%$$

Shrinkage of fabric by weft:

$$a_a = (1 - \frac{l_t \cdot t_{a,yp} + (R_t - t_{a,yp})d_{jp}}{K_{ht} \cdot t_{a,jp}(d_t + h_t^2 + (l_t/K_{ht} - d_t)^2 + (R_t - t_a)d_{jp})}) \times 100 = 8.8\%$$

R_t, R_a are knitting rapports;

$t_{t,ave}$, $t_{a,ave}$ are the number of intersections of warp and weft threads;

h_t, h_a are bending wave heights of warp and weft threads;

l_t, l_a are geometric density of warp and weft threads; K_{ht}, K_{ha} are the percentage of filling the fabric with warp and weft; d_t, d_a are calculated diameter of the warp and weft threads, mm.

The calculated surface density of the fabric was determined:

$$M^2 = \frac{m \cdot 100}{L \cdot B} = \frac{0.398 \cdot 100}{1 \cdot 1.65} = 241.212 \, g$$

In this case, m is the mass of warp and weft threads used for 100 meters of fabric; L is the length of the fabric sample, 1 meter; B is initial width of fabric, cm.

On the basis of the research results, based on the requirements for costume fabrics, the solution in the stages of the theoretical basis for the development of costume fabric of various blended composition has been found.

References

4. A.A. Martynova Structure and design of fabrics (Moscow State Textile University, 1999), p. 485
5. S.E. Mardonov, Journal Globus: technical sciences 75(41), 26-29 (2021)
7. S.E. Mardonov, Modern Innovations, Systems and Technologies 2(1), 76-82 (2022)