The effect of the Almalyk-Akhangaran industrial zone on changes in the groundwater level of the Ahangaran river basin

Azamat Fozilov1*, Ziyodullo Ganiyev1, Rasuljon Mamajanov1, Dilbar Jurakulova1, and Oytula Abdurayimova1

1Samarkand State University after name is Sharof Rashidov, Samarkand, Uzbekistan

Abstract. This article describes the state of groundwater and surface waters in the Akhangaran River basin, around the Almalyk Mining and Metallurgical Combine (AMMC), the amount of water consumed by the population of the city of Almalyk, the amount of precipitation in the region, and the annual flow regime of existing canals in the region. Comprehensive research methods, include the analysis of scientific and technical information on the geographical, hydrogeological, geomechanical and mineralogical compositions of the Almalyk-Akhangaran industrial zone, underground and surface waters, as well as the study of all valuable components by chemical, and X-ray structural methods, and atomic emission spectroscopy. Integration and point methods are used for measuring current velocity. Basic, detailed, abbreviated and graphical methods for measuring water flow are perfomed by electric metrs. Experimental filtration studies are carried out and systems of observation wells are organized. Additionally water temperature is measured with thermocouples and water density, salt concentration and water pH are measured using ionomers.

1 Introduction

The existence of all living organisms on Earth is associated with water, which is an important and unique substance mineral involved in the regulation of all processes in the body. There is no other mineral in nature that can replace water for human life. Water is an important factor in almost all processes occurring in the geographic crust, which is why water is the most important resource on Earth [1, 6, 11].

The rapid growth of the world's population, the development of industry, the increase in the number of large megacities and the use of fresh water in irrigationed for agriculture, among other, factors have led to an increase in the demand for water, especially in arid climate zones.

Groundwater plays an important role in providing the population with water. In ancient times, our ancestors did not use groundwater for irrigationed of agriculture. To save water resources, wells were used as sources of drinking and watering livestock [3, 9, 12].

* Corresponding author: azamat-fozilov@mail.ru
According to the data of the Republican Hydro-Information Center, groundwater reserves with mineralization of less than 1 g/l have decreased by 40% over the past 30 years (1980-2010). In recent years, the use of groundwater for irrigation, and municipal and technical purposes has expanded. As a result, the composition of groundwater has deteriorated, making it unsuitable for use as drinking water [2, 13, 17-18, 20].

In connection with the construction of the Almalyk Mining and Metallurgical Complex (AMMC), the surface and underground waters of the Akhangaran River basin are used to provide water for technological and household processes. The underground waters of the Angren basin are the main water source for the AMMC and the city of Almalyk. In this regard, it is relevant to study some of the geographic patterns of surface water, and groundwater and water quality in the Akhangaran River basin.

This study evaluates the surface and ground-waters of the Akhangaran River basin. The Akhangaran River is located between the Chatkal ridge and Kuramin ridge, with a height of 2710 m, and coordinates of 41°17′55″ and 70°37′13″. It has a length of 236 km, a basin area of 7710 km², and a water consumption of 22.8 m³/s, (by Turk village).

2 Materials and methods

Comprehensive research methods, include the analysis of scientific and technical information on the geographical, hydrogeological, geomechanical and mineralogical compositions of the Almalyk industrial region, and underground and surface waters, as well as the study of all valuable components by chemical, X-ray structural methods, and atomic emission spectroscopy. Integration and point methods were used for measuring current velocity. Basic, detailed, abbreviated and graphical methods for measuring water flow by electric metres were employed. Experimental filtration studies were carried out and systems of observation wells were organized. Additionally, water temperature was measured with thermocouples and water density, salt concentration, and water pH were measured using ionomers [5, 15].

3 Results and Discussion

The joint-stock company AMMC is one of the largest industrial enterprises in the Republic of Uzbekistan, in addition, it is focused on the production of exported products. The ore is mined in an open pit, and then these ores are, crushed and enriched by the flotation method. The grinding process is carried out in an aqueous solution. Then, the pulp is subjected to enrichment, which flows completely in an aqueous medium. On average, more than 40 million tonnes of ore per year are processed by flotation in concentration plants, and the hourly water consumption is 6.33 m³/s [14].

The Almalyk-Akhangelan industrial region has a rich mineral resource base, but is poor in water resources.

Water resources in the industrial area are represented by surface and underground flows of the Akhangaran River and its tributaries. There are no glaciers in the Akhangaran River basin, therefore, river runoff, the main factor in the formation of groundwater, largely depends on the annual water content. The recurrence rate of dry years is (P>50%) -4 -5 in 10 years.

The underground waters forming in the Akhangaran River basin are of to the infiltration genetic type. According to their conditions of occurrences, ground, pore and fractured-pore waters are distinguished.

In the intermontane valley of the Akhangaran River, one of the largest underground water deposits is developed, and is confined to the modern alluvial deposits of the Syrdarya
Complex and permeable pebbles of the upper Anthropogenic age. The deposits of the productive aquifer are characterized by high filtration properties, good water availability and a close connection with the river.

Groundwater deposits are formed in the section of the valley from the village of Turk to the Syrdarya River. The thickness of the aquifers varies down the valley from 10 to 120 m.

Groundwater is fed by the infiltration of surface runoff and side inflow. It is almost consumed by wedging out and evaporation.

The valley between the Karakhtay and Saganak sections, it was approved by the State Commission for Reserves of the Republic of Uzbekistan in categories A + B + C yield 10.424 m³/s of operational reserves, including industrial categories A + B, which yield - 7.724 m³/s [10].

The distribution of reserves by settlement blocks is shown in Table №1. These reserves are used by 13 groundwater and 54 single water intakes. All water intakes on a territorial basis are combined into 3 water intake complexes: Almalyk, Saganak and Akhangaran.

Table 1. Stocks and flow rates of groundwater by water intake complexes.

<table>
<thead>
<tr>
<th>No</th>
<th>Water intake complex</th>
<th>Calculation block and water intake</th>
<th>Approved reserves of the category, quantity in m³/s.</th>
<th>Actual water yield by years, given in m³/s.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2020</td>
</tr>
<tr>
<td>1</td>
<td>Karakhtai-Akchih;</td>
<td>a) Karakhtai water intake, well №13k, 14k, 15k, and 24k. b) Karakhtai coastal and 27k.</td>
<td>A+B 2.744</td>
<td>0.304</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a) Sartamgali</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) Karakhtai (except for 13k, 14k, 15k, 24k.) c) Single water intakes 18r, 134 RUR 2de, and 25k.</td>
<td>A+B 1.92</td>
<td>2.251</td>
</tr>
<tr>
<td>3</td>
<td>Tash-Almalyk;</td>
<td>a) Tash (industrial-drinking). b) Tash-Sartamgali c) Single No. 37c, 37b, 37r, 38a, 38r, Bytkhim 1.2,3,4; 44e, 45a, 45 e, Shirabad karst sinkhole.</td>
<td>A+B 1.92</td>
<td>2.181</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a) Akhangaran</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) Upper-Akhangaran</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c) Lower-Akhangaran</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d) Single №. 56r. “Zagotstock” “cleaning” 1.2,11e, 12e, 13e, Shirabad karst sinkhole.</td>
<td>A+B+C 10.424</td>
<td>7.495</td>
</tr>
<tr>
<td></td>
<td></td>
<td>a) Zakonturny</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b) Saganak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c) Ivalek</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d) Lower-Saganak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>e) Single; “Sawpitomnik”, “Kerauchi”, the village of Kul-tepa, the village of Koriz, the village of Kulota, Korkizita, “Cleaning”.</td>
<td>A+B 7.724</td>
<td>5.264</td>
</tr>
</tbody>
</table>

The Almalyk water intake complex (AWC) includes group and single water intakes located in the left-bank section of the Akhangaran River valley, between the Karakhtay and Almalyk exploration sections. These are the Karakhtai areal and coastal, Sartamgali, Tash-Sartamgali, and Tash industrial and drinking water intakes called “heap leaching”, and a number of single water intakes.

The Saganak water intake complex (SWC) includes group and single water intakes located on the left-bank section of the valley (from the Almalyk exploration site to
Tashkanal). These include: the Fabrichny, Zavodskoy, Zakonturny, Saganak, Lower-Saganak, and Ivalek group water intakes and a number of single borehole water intakes.

The Akhangaran water intake complex (AkhVK) includes all water intakes located on the right-bank section of the valley. These are the Akhangaran, Upper-Akhangaran, Lower-Akhangaran and single borehole water intakes. The water intakes of the AWC interact with each other, while the water intakes of the SWC and AkhWC do not interact. The AWC and SWC supply water to the Almalyk industrial centre, AkhWC - Akhangaran.

We measured the level and temperature of groundwater in observation wells and the level in production wells. Measurements of flow rates were made in production wells when working on the outflow, where possible according to technical conditions. A total of 16 measurements were made, of which 12 were measured at the Karakhtai water intake. The data obtained are shown in Table 2. Measurements of the groundwater level in observation wells with depths of 0-20 m and 20-40 m were made using rods at gauging stations.

The climatic features of the region are also factors that affect the groundwater regime. In 2023, from January to May, the annual precipitation rate increased several times. The annual amount of precipitation for 2021, according to the Angren meteorological station, which is located at an altitude of -942 metres above sea level, was 580.3 mm, which is 115.8% of the average long-term norm (495.8 mm). The amount of precipitation from October 2021 to March 2023 in the Akhangaran River basin was 435 mm, i.e., 124.8% of the norm. Relatively higher snowmelt in the lower zones is because the air temperature in March in the Kuramyn and Chatkal ridges was 3-5°C higher than the norm. According to our measurements and research, the air temperature is characterized by the following indicators: the average annual temperature is 17.5°C with a norm of 16.9°C (in 2019-2020, the air temperature in the summer reached 46°C), the coldest temperatures was occurred in February 2019 and 2020, during which the average monthly temperatures were 2.6-3.5°C, with a norm of 1.6°C, and the hottest temperatures occurred in July and August (until August 20), and the average monthly air temperature was 31.5°C with a norm of 26.1°C (2019). The average annual relative air humidity was -54%, the highest air humidity was observed in November at 76%, and the lowest was observed in July at -29% [4, 7-8].

Table 2. Measurements and sampling in observation and production wells in the Almalyk region (2023).

<table>
<thead>
<tr>
<th>No</th>
<th>Work completed</th>
<th>Unit of measurement</th>
<th>Measurement quantity</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Measurement of the groundwater level in observation wells 0-20 metres deep</td>
<td>Measurement, quantity</td>
<td>60-70</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20-30 metres deep</td>
<td>Measurement, quantity</td>
<td>75</td>
<td>Measurement by water metre and counter</td>
</tr>
<tr>
<td>3</td>
<td>Measurement of the level and temperature of groundwater in observation wells 0-20 meters deep</td>
<td>Measurement, quantity and temperature + 17.18 °C</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Also 20-40 meters deep</td>
<td>Measurement, quantity</td>
<td>7</td>
<td>Travel only on foot</td>
</tr>
<tr>
<td>5</td>
<td>Measurement of the water level in production wells</td>
<td>Measurement, quantity</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Water sampled from wells for reduced analysis</td>
<td>Sample, litres</td>
<td>2</td>
<td>Field work</td>
</tr>
<tr>
<td>7</td>
<td>Water samples collected from the well for full analysis</td>
<td>Sample, litres</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Measurement of the water level along the rail</td>
<td>Measurement, quantity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Experimental work to determine the geofiltration parameters</td>
<td>litres</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
We studied mainly the Akhangaran basin. The average annual flow through the Sartamgalinsky hydroelectric station (the city of Almalyk is fed from this flow) is within 20m³/s, and its availability is 92-93%.

Regulation of the Akhangaran River flow (picture) by the Akhangaran reservoir in 2022 took place in March-August. The accumulation of the reservoir took place in March-May, and the damage to river runoff was 22.5-70%. The increase in river flow during this period was 189.4-410%.

The results of monitoring the water level in the Angren and Ohangaron sections show that in the Angren section it was 23.12 and 22.38 m in November-December, respectively, and in the Ohangaron section it was 17.17, 17, 42 and corresponded to 17.29 m.

The lowest level of underground water was observed in Angren section in August and September at 24.87 m and 25.16 m. At the Akhangaran site, the lowest period of the level was observed from August to December, and the lowest period was in October, when it fell to 21.37 m.

The results obtained from our observations in the Pskent, Buka and Akkurgan sections are similar to each other. The lowest water level in the Pskent section occurred in October, November, December, January and February. The lowest water level was 13.37 m in October and 12.71 m in November. The period of the highest water level corresponded to the months of April and May and showed 10.42 m and 10.12 m. The highest level of underground water in the Boka section corresponded to May and showed 7.68 m. The lowest period was observed in January-February and showed 8.92 and 9.14 m, respectively. The highest indicator of the water level in the Akkurgan section corresponds to March and November, showing 4.44 m and 4.26 m. The lowest level corresponds to June and July and varies from 5.5 m to 5.67 m.

The situation is slightly different in the case of water intake facilities under the management of Almalyk Metallurgical and Mining Combine (AMMC), where the closer the water intake facilities are to the mining area and to the Copper Smelter and Copper Enrichment Factory, the more water is used and which causes a sharp drop in the groundwater level.

If the water intake facility is located far from the industrial zone and the water consumption is correspondingly low, the level will remain the same throughout the year. The water level in the water intake facilities of the contour drainage, copper smelting plant and copper beneficiation plant varies from 16 m to 20 m depending on the increase and decrease of water consumption. We can see that the level of underground water in these water intake facilities mainly decreases in July-October and rises in November-May. In water intake facilities such as Tash, Tash-Sartamgali, Karakhtay and Karakhtay Maidan, we can see that the groundwater level in them has partially changed or remained unchanged due to the fact that they are located in areas that are medium-far from the industrial zone. there are tensions in changes in water levels in the facility. We can see that the highest water level in the rock catchment is between June and August, and it ranges from 3.28 m to 3.77 m. The lowest level of underground water corresponds to the months of January, February and March, in this period of the year the level of underground water was 8.51, 9.47, 8.40 m. During the observation period, the lowest water level in the Tash-Sartamgali water intake facility was observed in January and February, 3.79 and 3.68 m. The highest water level was 1.78 m in May. In January, February and December, the lowest water level in the Karakhtay coastal water intake facility was 2.17, 2.11 and 2.18 m. The highest level indicator was 1.32 and 1.47 m corresponding to May and June. The lowest water level in the Karakhtay field water intake facility was observed in January, February, March and December. The highest level of groundwater corresponded to the months of May and June and was 1.73 and 1.92 m (see Tables 3 and 4 in the Appendix). In 2021, after analyzing
graphs of average monthly changes in groundwater level in Tash, Tash-Sartamgali and Karakhtay water intake facilities, the following conclusions were drawn:

- The minimum level of underground water is observed in Tash-Sartamgali water intake facility in January, in Tash water intake facility in February, in Karakhtay coastal water intake facility in December and in Karakhtay square water intake facility in March.
- The maximum groundwater level was observed in May at the Karakhtay coastal water intake facility, at the Karakhtay field water intake facility and at the Tash-Sartamgali water intake facility, and at the Tash water intake facility in June.
- In the autumn-winter period (October-December) while analyzing the state of the underground water level in the stone water intake facility, it should be noted that their sharp rise was observed in October, especially in the first stage. Compared to September, the level of groundwater rose by 1.37 m, according to the water intake as a whole, in some wells this value reached 4.03 m (35 wells). The same situation was observed in previous years, with the exception of 2020, where the groundwater level (8.82-7.12 m) in October-December was -1.91 m in comparison to September (Figure 1).

![Map](https://example.com/map.png)

Fig. 1. Map – scheme of groundwater level in the Akhangaran river basin (in meters).

As shown in the map of the potentiometric surface of the Almalyk-Akhangaran mining and industrial region, the increase or decrease in groundwater depends on the mode of operation of the canals that pass through the mining region. There are 5 channels that have been studied and researched in detail throughout the year (2022-2023).

- Canal Sharhiya (c 1) was studied during the year, the average annual flow rate in the canal is was 9.2 m³/s, the average growing season is was 12.4 m³/s, and the average value for the non-growing period is was 6.1 m³/s.
- The concrete Canal Yardam (c 2) was closed in January, February, November, and December. The average annual discharge was 1.1 m³/s, the average in the growing season was 2.1 m³/s, and the average in the non-growing period was 0.022 m³/s.
- The concrete canal Tanachi-Buka (c 3), was characterized by an average annual flow rate of 2.63 m³/s, the average flow rate in the growing season was 4.22 m³/s, the average in the non-growing season was -0.11 m³/s, and channel (c 3) did not work in January-February and December.
• The Yardam canal (small) (c 4) had runoff in March-August and October, and the average annual discharge was -1.2 m³/s, in the nongrowing period it was 0.62 m³/s, and the average vegetation discharge was 1.82 m³/s.

• The Khadzha-Balyand canal (c 5) (upper canal from the side of the Akhangaran water intake) (picture) had water throughout the year. The average annual flow rate was 2.1 m³/s, the average monthly flow rate was 0.44 m³/s, the average flow rate in the growing season was 3.9 m³/s, and that in the non-growing season was no more than 0.8 m³/s. Thus, the impact of water management on surface runoff was estimated based on the result of the balanced hydrometry of the studied period (mainly 2022-2023).

The balanced income in the studied region is made up of the costs made by the channels, in 5 channels (c 1, c 2, c 3, c 4, and c 5), two canals are concrete and 3 are natural ground. These include Yardam, Tanachi-Buka and the irrigation network along the Sartamgali hydraulic well (picture). The balanced expenses items are made up of the costs of the indicated canals, their outward branches, and the Karasu River along the Tash hydraulic well.

The average annual water losses in 2018 in the region were -1.42 m³/s, the average for the growing season was -2.52 m³/s, and the average for the non-growing season was -0.47 m³/s. The maximum monthly average loss of -3.1 m³/s, occurred in June, and the minimum of -0.042 m³/s occurred in January.

Thus, it can be concluded that the years in which the canals were studied (2022-2023) had high water availability. The supply of the average annual surface runoff in the Almalyk-Akhangaran industrial region was 104.2%, and the supply of the total flood runoff (March-June) was 101.2%. Industrial and drinking water supply in the industrial region is provided at the expense of the underground waters of the Akhangaran River valley. The productive aquifer is confined to the alluvial pebbles of the Syrdarya and Golodnostepi Complexes.

According to our data, the actual water consumption of the AMMC for production needs is -2.72 m³/s, and that for the agricultural needs of the plant is -1.3 m³/s. For the needs of various organizations of the Joint-Stock Company of the Almalyk Mining and Metallurgical Complex, -2.2 m³/s of water is used, for household and drinking water supply of the city -2.1 m³/s is used, for agricultural irrigation and water supply -0.85 m³/s is used.

The Almalyk enterprise "Suvokova" receives -1.1 m³/s of water from the AMMC during the period of peak water consumption (0.56 m³/s comes from the Karakhtai areal water intake -). The actual water consumption of the city of Almalyk during the peak period, taking into account the water transferred by the AMMC for household and drinking needs, is 3.2 m³/s, of which 2.89 m³/s is used for the household and drinking needs of the city, and 0.66 m³/s — is used for the household needs of various organizations.

4 Conclusion

It is necessary to establish a strict accounting of the amount of water used for household, drinking and industrial needs. Such accounting is possible with the help of multiday or continuous self-feeding devices installed on water conduits. In industrial areas, it is necessary to continue studying the groundwater regimes, the chemical and mineralogical composition of water, and soils, and the operation of water and intakes to develop recommendations for integrated and rational use, as well as the protection of water resources from depletion and pollution.

To obtain high-quality information during research, it is necessary to equip all production wells with flow metres and measuring pipes at each water intake. In addition, it is necessary to equip recorders and devices for work during pumping -to restore the outflow
to measure the performance by a the hydrometric method. As a result, it becomes possible to clarify the productivity of wells and the geofiltration parameters of the aquifer.

References

4. Data Center Hydrometeorological Service of Uzbekistan on the Angren meteorological station, “G-1 ANGREN” (2020)
7. G.A. Mavlyanov, Hydrogeology of the USSR. volume XXXIX, Uzbek SSR (Nedra, Moscow, 1971)
8. S.Sh. Mirzaev, Groundwater reserves of Uzbekistan (Fan, Tashkent, 1974)
10. On the Approval of the classification of exploitable reserves and predicted groundwater resources, Approved by the decree of the Council of Ministers of the USSR on February 28, 1983, Moscow, 177 (1983)
15. V.S. Sibirtsev, Experimental methods for the study of physical and chemical systems, Part 2. Atomic Spectroscopy (ITMO University, SPb, 2016)

18. V.I. Sokolov, Sh.G. Talipov, A.T. Salakhiddinov, M.F. Abduraimov, Uzbekistan on the way to achieving water security: collection of articles (RedGrey, Tashkent, 2019)

32. Nilufar Sabirova, Michael Groll, Subkhan Abbasov, Use of remote sensing Landsat-EVI in the assessment of landscape degradation (On the example of the Aydar-Arnasay lake systems). E3S Web of Conferences 386, 05014 (2023)

35. K.S. Yarashev, B.A. Meliev, Research of mediterranean Zarafshan base area lanshafts and possiblity of shi pping based on pictures that taken from landsat space station. International scientific and practical conference "innovative ideas of modern youth in science and education" 316-317 (2019)
