The rise of telemedicine services in Indonesia: what factors determine customers' repurchase intentions?

Mar’atus Sholihah1,*, Zevano Christina Ardana1, and Yuya Mitake2

1Department of Industrial and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
2School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan

Abstract. Telemedicine is the delivery of health care services using information and communication technology. Telemedicine services began to be widely used during the COVID-19 pandemic. With the continuous rise of telemedicine platforms, it is a solid call for companies to retain customers' purchases to maintain sustainable competitiveness. Thus, this research explores factors influencing customer decisions to repurchase services in the same telemedicine platform. This study develops a conceptual model: Sales and Marketing Promotion, E-Service Quality, and Brand Image determine repurchase intention, with E-Satisfaction and Brand Trust as intervening variables. The proposed model was tested and validated in the Halodoc case study as Indonesia's most used telemedicine service, with a 46.5% market share. The data collection uses an online survey with 195 respondents who have used Halodoc services. Structural Equation Modelling Partial Least Square is used to examine the model and test the hypothesis with the help of SmartPLS 4. The results show that variables of Sales and Marketing Promotion, E-Service Quality, and Brand Image affect E-Satisfaction and Brand Trust. Meanwhile, E-Service Quality, Brand Image, E-Satisfaction, and Brand Trust affect Repurchase Intention. In contrast, the Sales and Marketing Promotion variable requires the E-Satisfaction to intervene in Repurchase Intention. This research reveals the critical determinants of customers' repurchase intentions in telemedicine in Indonesia.

1 Introduction

Telemedicine is a technology-based health service where users consult with doctors remotely for diagnostic consultations and patient care management [1]. There was a surge in access to telemedicine applications by 600% due to the COVID-19 Pandemic. Moreover, Deloitte mentions around 57% of Indonesians have used telemedicine services, with a majority of 77% having extensively used services between 1 to 5 times a year [2]. Although Indonesia’s health care has significantly digitalized through the rapid growth of telemedicine services, the post-pandemic situation unveils challenges in this sector. Customers began to switch back to offline transactions where face-to-face consultations take place.

Similar to other conventional businesses, the survival of telemedicine providers greatly relies on the steady and continuous purchase of the services. Repurchase of customers is crucial and desirable because trusted and loyal customers have significant economic value to companies [3]. Moreover, acquiring new customers costs companies five times more than retaining the existing ones [4]. Repurchase intention is the subjective probability that an experienced customer will continue to buy a product or service from the same company [5]. Therefore, this study intends to explore the factors influencing repurchase intention in Telemedicine.

2 Theoretical background

Previous studies have made investigations of predictors of repurchase intention. Repurchase intention is highly influenced by customers' experiences towards the quality of service provision. Therefore, several extant research proposed factors such as E-Service Quality (E-Servqual), e-satisfaction, promotion, brand image, and brand trust determine repurchase intention.

E-Servqual is the extent to which a website provides services effectively and efficiently. It is deemed a comprehensive model due to comprehensive dimensions to evaluate the quality of electronic services [6]. Meanwhile, e-satisfaction is customer satisfaction with previous purchasing experiences with a given e-commerce company. It is pivotal in market competition, as well as being able to form consumer loyalty [7]. If online services meet customers' expectations, customers will feel satisfied and repeat orders.

Promotion is one of the marketing mixes. Sales promotion is critical in marketing a product or service, consisting of a collection of short-term intensive tools to stimulate quick consumer purchases [8]. The promotion aims to attract attention, provide information, and influence sales.

Other studies have predicted that brand image and trust influence repurchase intention. Brand Image
describes consumer associations and beliefs about specific brands [9]. It is a set of brand associations that are formed and embedded in the minds of consumers (Rangkuti, 2012). Consumers will choose products that are well known through experience using the product or based on information obtained through various sources. At the same time, brand trust is the expectation of reliability and intense good brand [10]. Brand trust is the perception of reliability from the consumer's point of view based on experience or more on a sequence of transactions or interactions characterized by the fulfilment of expectations for product performance and satisfaction [10]. It is related to customers' desire to rely on a brand with the risks faced because of the expectation that the brand will cause positive results.

3 Conceptual framework and hypothesis design

This research key determinants of repurchase intention of telemedicine as sales and marketing promotion, E-Service Quality, and Brand Image while considering the mediating roles of E-Satisfaction and Brand Trust. Fig. 1 shows the conceptual model of the research.

![Fig. 1. Conceptual model.](image)

A set of indicators is defined to measure each latent variable as shown in Table 1.

<table>
<thead>
<tr>
<th>Latent Variable</th>
<th>Indicator</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1 Online Promotion</td>
<td>Promotional message, Promotion media, Promotion time, Promotion frequency</td>
<td>[8]</td>
</tr>
<tr>
<td>X2 E-Service Quality</td>
<td>Efficiency, Fulfilment, System Availability, Privacy</td>
<td>[11]</td>
</tr>
<tr>
<td>X3 Brand Image</td>
<td>Recognition, Reputation, Affinity, Strengthness, Uniqueness, Favourable</td>
<td>[8,12]</td>
</tr>
<tr>
<td>Y Repurchase Intention</td>
<td>Transactional interest, Referential interest, Preferential interest, Explorative interest</td>
<td>[13]</td>
</tr>
<tr>
<td>Z1 E-Satisfaction</td>
<td>Usefulness, Enjoyment, Past experience, Decision</td>
<td>[10]</td>
</tr>
<tr>
<td>Z2 Brand Trust</td>
<td>Benevolence, Integrity, Competence, Willingness to depend, Subjective probability of depending</td>
<td>[10]</td>
</tr>
</tbody>
</table>

The previously described variables will then be used in determining the hypotheses tested in this study. The hypothesis determined has the aim of helping to prove the relationship between the independent variable, dependent variable, and intervening variable. The following are the hypotheses that will be used in this study.

1. **Hypothesis 1**
 - H01: Sales and marketing promotion does not affect E-Satisfaction.
 - H11: Sales and marketing promotion affects E-Satisfaction.

2. **Hypothesis 2**
 - H02: Sales and marketing promotion does not affect brand trust.
 - H12: Sales and marketing promotion affects brand trust.

3. **Hypothesis 3**
 - H03: E-Service Quality does not affect E-Satisfaction.
 - H13: E-Service Quality affects E-Satisfaction.

4. **Hypothesis 4**
 - H04: E-Service Quality does not affect brand trust.
 - H14: E-Service Quality affects brand trust.

5. **Hypothesis 5**
 - H05: Brand image has no significant effect on E-Satisfaction.
 - H15: Brand image affects E-Satisfaction.

6. **Hypothesis 6**
 - H06: Brand image does not affect brand trust.
 - H16: Brand image affects brand trust.

7. **Hypothesis 7**
 - H07: E-Satisfaction does not affect repurchase intention.
 - H17: E-Satisfaction affects repurchase intention.

8. **Hypothesis 8**
 - H08: Brand trust does not affect repurchase intention.
 - H18: Brand trust affects repurchase intention.

9. **Hypothesis 9**
 - H09: Sales and marketing promotion does not affect repurchase intention.
 - H19: Sales and marketing promotion has a significant effect.

10. **Hypothesis 10**
 - H010: E-Service Quality has no significant effect on repurchase intention.
 - H110: E-Service Quality has a significant effect on repurchase intention.

11. **Hypothesis 11**
 - H011: Brand image has no significant effect on repurchase intention.
H11: Brand image has a significant effect on repurchase intention.

3.1. Data collection

This research uses a survey method under explanatory research with a quantitative approach. Data collection was done through a questionnaire. This research uses Halodoc as a case study of an Indonesian telemedicine provider. Halodoc is deemed suitable as it is a market leader in the Indonesian telemedicine industry. Thus, the population of this study is Halodoc users who have transacted medicine on Halodoc's pharmacy delivery service from January 1 to June 29, 2023. The total number of respondents was 195 people. This number has satisfied the minimum sample in SEM PLS with five times the total number of indicators.

3.3 Data analysis

Hypothesis testing uses the Structural Equation Model (SEM) method based on Partial Least Square (PLS). This method is selected because PLS-SEM is suitable if the sample size is small, has little theory, predictive accuracy in the model is most important, and model specifications cannot be ascertained.

3.3 Data analysis and interpretation

The analysis at this stage aims to explain the relationship between dependent, independent, and intervening variables based on data processing that has been carried out and which indicators affect repurchase intention.

4 Result and discussion

4.1 Outer model testing

This research was conducted by distributing questionnaires to 195 online respondents. The SEM PLS was constructed based on the data collection. Indicators with loading factors below 0.7 were removed, resulting in the improved SEM PLS model shown in Fig. 2.

As the results of data processing of SEM PLS, Fig. 2, shows that all indicators have loading factors bigger than 0.7. It indicates that the validity level is higher and includes the convergent validity. The modification of this model continues with discriminant validity testing.

The evaluation of discriminant validity is shown by average variance extracted (AVE) methods for construct. The model has better discriminant validity if the square root of the AVE for each construct is greater than the correlation between other constructs. Table 2 shows the value of AVE for each construct.

<table>
<thead>
<tr>
<th>Variable</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales & Marketing Promotion</td>
<td>0.556</td>
</tr>
<tr>
<td>E-Service Quality</td>
<td>0.580</td>
</tr>
<tr>
<td>Brand Image</td>
<td>0.616</td>
</tr>
<tr>
<td>E-Satisfaction</td>
<td>0.608</td>
</tr>
<tr>
<td>Brand Trust</td>
<td>0.588</td>
</tr>
<tr>
<td>Repurchase Intention</td>
<td>0.618</td>
</tr>
</tbody>
</table>

The result of the AVE of each construct is higher than 0.5, as shown in Table 2. Therefore, there is no convergent validity problem in the tested model. The following is the Fornell-Larcker Criterion Table (Table 3), which shows that the square root of the AVE is more significant than its correlation with other variables.

Table 3. AVE results by other variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Brand Image</th>
<th>Brand Trust</th>
<th>E-Satisfaction</th>
<th>E-Service Quality</th>
<th>Repurchase Intention</th>
<th>Sales & Marketing Promotion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand Image</td>
<td>0.785</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brand Trust</td>
<td>0.675</td>
<td>0.767</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E-Satisfaction</td>
<td>0.636</td>
<td>0.758</td>
<td>0.780</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>E-Service Quality</td>
<td>0.591</td>
<td>0.672</td>
<td>0.642</td>
<td>0.761</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Repurchase Intention</td>
<td>0.638</td>
<td>0.717</td>
<td>0.727</td>
<td>0.601</td>
<td>0.786</td>
<td>-</td>
</tr>
<tr>
<td>Sales & Marketing Promotion</td>
<td>0.644</td>
<td>0.612</td>
<td>0.634</td>
<td>0.556</td>
<td>0.526</td>
<td>0.745</td>
</tr>
</tbody>
</table>

Table 3 shows that the square root of the AVE is greater than the correction with other variables, which is indicated by bold. It shows that the discriminant validity requirements are met. Discriminant validity is used to ensure that the concept of each construct or latent variable is different from other variables. The following table Table 4 is a cross-loading table to show the results of the discriminant validity of the research model.
Table 4. Loading Factor.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Sales & Marketing Promotion</th>
<th>E-Service Quality</th>
<th>Brand Image</th>
<th>E-Satisfaction</th>
<th>Brand Trust</th>
<th>Repurchase Intention</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP1</td>
<td>0.721</td>
<td>0.383</td>
<td>0.485</td>
<td>0.417</td>
<td>0.368</td>
<td>0.289</td>
</tr>
<tr>
<td>MP2</td>
<td>0.725</td>
<td>0.400</td>
<td>0.462</td>
<td>0.465</td>
<td>0.453</td>
<td>0.408</td>
</tr>
<tr>
<td>PP1</td>
<td>0.750</td>
<td>0.421</td>
<td>0.407</td>
<td>0.466</td>
<td>0.451</td>
<td>0.359</td>
</tr>
<tr>
<td>PP2</td>
<td>0.785</td>
<td>0.448</td>
<td>0.557</td>
<td>0.529</td>
<td>0.531</td>
<td>0.483</td>
</tr>
<tr>
<td>E1</td>
<td>0.429</td>
<td>0.703</td>
<td>0.439</td>
<td>0.475</td>
<td>0.482</td>
<td>0.452</td>
</tr>
<tr>
<td>P1</td>
<td>0.445</td>
<td>0.828</td>
<td>0.454</td>
<td>0.491</td>
<td>0.533</td>
<td>0.469</td>
</tr>
<tr>
<td>P2</td>
<td>0.423</td>
<td>0.772</td>
<td>0.491</td>
<td>0.472</td>
<td>0.506</td>
<td>0.436</td>
</tr>
<tr>
<td>SA2</td>
<td>0.391</td>
<td>0.737</td>
<td>0.416</td>
<td>0.513</td>
<td>0.522</td>
<td>0.471</td>
</tr>
<tr>
<td>A1</td>
<td>0.434</td>
<td>0.390</td>
<td>0.748</td>
<td>0.448</td>
<td>0.487</td>
<td>0.498</td>
</tr>
<tr>
<td>RE1</td>
<td>0.563</td>
<td>0.555</td>
<td>0.830</td>
<td>0.549</td>
<td>0.576</td>
<td>0.576</td>
</tr>
<tr>
<td>S1</td>
<td>0.533</td>
<td>0.465</td>
<td>0.830</td>
<td>0.528</td>
<td>0.524</td>
<td>0.480</td>
</tr>
<tr>
<td>UQ1</td>
<td>0.482</td>
<td>0.433</td>
<td>0.726</td>
<td>0.464</td>
<td>0.529</td>
<td>0.441</td>
</tr>
<tr>
<td>D1</td>
<td>0.466</td>
<td>0.523</td>
<td>0.486</td>
<td>0.791</td>
<td>0.571</td>
<td>0.602</td>
</tr>
<tr>
<td>PE1</td>
<td>0.535</td>
<td>0.484</td>
<td>0.572</td>
<td>0.796</td>
<td>0.594</td>
<td>0.565</td>
</tr>
<tr>
<td>PE2</td>
<td>0.435</td>
<td>0.455</td>
<td>0.437</td>
<td>0.785</td>
<td>0.544</td>
<td>0.510</td>
</tr>
<tr>
<td>U1</td>
<td>0.533</td>
<td>0.533</td>
<td>0.480</td>
<td>0.746</td>
<td>0.646</td>
<td>0.581</td>
</tr>
<tr>
<td>WD1</td>
<td>0.511</td>
<td>0.570</td>
<td>0.544</td>
<td>0.645</td>
<td>0.820</td>
<td>0.660</td>
</tr>
<tr>
<td>SP1</td>
<td>0.508</td>
<td>0.551</td>
<td>0.554</td>
<td>0.599</td>
<td>0.783</td>
<td>0.629</td>
</tr>
<tr>
<td>IN1</td>
<td>0.433</td>
<td>0.482</td>
<td>0.517</td>
<td>0.500</td>
<td>0.728</td>
<td>0.489</td>
</tr>
<tr>
<td>IN3</td>
<td>0.407</td>
<td>0.480</td>
<td>0.475</td>
<td>0.576</td>
<td>0.733</td>
<td>0.461</td>
</tr>
<tr>
<td>C1</td>
<td>0.520</td>
<td>0.507</td>
<td>0.547</td>
<td>0.618</td>
<td>0.598</td>
<td>0.551</td>
</tr>
<tr>
<td>C2</td>
<td>0.421</td>
<td>0.494</td>
<td>0.461</td>
<td>0.537</td>
<td>0.733</td>
<td>0.471</td>
</tr>
<tr>
<td>ME2</td>
<td>0.462</td>
<td>0.456</td>
<td>0.545</td>
<td>0.506</td>
<td>0.521</td>
<td>0.750</td>
</tr>
<tr>
<td>MT1</td>
<td>0.440</td>
<td>0.484</td>
<td>0.463</td>
<td>0.601</td>
<td>0.603</td>
<td>0.774</td>
</tr>
<tr>
<td>PR1</td>
<td>0.398</td>
<td>0.475</td>
<td>0.439</td>
<td>0.616</td>
<td>0.542</td>
<td>0.810</td>
</tr>
<tr>
<td>PR2</td>
<td>0.451</td>
<td>0.475</td>
<td>0.562</td>
<td>0.539</td>
<td>0.585</td>
<td>0.810</td>
</tr>
</tbody>
</table>

The bold numbers in Table 4 indicate that the values are more significant than the cross-loading value. We conclude that all constructs or latent variables have good discriminant validity. Apart from being measured by assessing the convergent and discriminant validity of the outer model, it is done by looking at the latent variable as measured by the composite reliability value of the indicator block that measures the construct. The following is the composite reliability value in Table 5. All composite reliability values are more than 0.7, which shows that the composite reliability values are high. The value of Cronbach Alpha is used to look at the latent variables. The Cronbach Alpha indicates how to calculate constructs. It is shown that the Cronbach alpha has a value larger than 0.6, and this indicates that the reliability is high.

Table 5. Composite Reliability.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Composite Reliability</th>
<th>Cronbach’s Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand Image</td>
<td>0.797</td>
<td>0.791</td>
</tr>
<tr>
<td>Brand Trust</td>
<td>0.866</td>
<td>0.860</td>
</tr>
<tr>
<td>E-Satisfaction</td>
<td>0.786</td>
<td>0.785</td>
</tr>
<tr>
<td>E-Service Quality</td>
<td>0.757</td>
<td>0.756</td>
</tr>
<tr>
<td>Repurchase Intention</td>
<td>0.795</td>
<td>0.794</td>
</tr>
<tr>
<td>Sales & Marketing Promotion</td>
<td>0.743</td>
<td>0.735</td>
</tr>
</tbody>
</table>

4.2 Inner model testing

The R² is shown the determination variable exogen compared to endogens (Table 7). The value of R² = 0.75 indicates that the model is high. R² is found that 0.5 and 0.25 indicate the model is moderate and weak, respectively.

Table 6. R² value

<table>
<thead>
<tr>
<th>Variabel Endogen</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand Trust</td>
<td>0.591</td>
</tr>
<tr>
<td>E-Satisfaction</td>
<td>0.557</td>
</tr>
<tr>
<td>Repurchase Intention</td>
<td>0.618</td>
</tr>
</tbody>
</table>

Table 6 shows that the value of R² is in the range of 0.557 to 0.618. Based on this result, it shows that the value is moderate.

The value of Q² measures how well the model generates the observed value and the parameter estimate. A Q² value greater than 0 indicates that the model has predictive relevance, while a Q² value of less than 0 indicates that the model has less predictive relevance.

\[
Q^2 = 1 - (1 - R^2_1)(1 - R^2_2) \ldots (1 - R^2_X)
\]

\[
Q^2 = 1 - (1 - 0.591)(1 - 0.557)(1 - 0.618)
\]

\[
Q^2 = 0.888026434
\]

F² analysis is used to see the magnitude of the influence between variables. An F² value of 0.02 is small, 0.15 is medium, and 0.35 is significant. Values less than 0.02 can be ignored or considered to have no effect. A value of more than 0.35 is none.
4.3 Bootstrapping testing

In PLS, each relationship is tested using simulation with the bootstrapping method on the sample. This test aims to minimize the problem of abnormalities in research. The following is a table of the total effect and the effect of intervening variables.

Table 8. Total influence

<table>
<thead>
<tr>
<th>Sales & Marketing Promotion</th>
<th>E-Service Quality</th>
<th>Brand Image</th>
<th>E-Satisfaction</th>
<th>Repurchase Intention</th>
<th>T-statistic</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales & Marketing Promotion</td>
<td>0.099</td>
<td>0.049</td>
<td>0.004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-Service Quality</td>
<td>0.148</td>
<td>0.198</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brand Image</td>
<td>0.075</td>
<td>0.137</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Based on the results shown in Tables 8 and 9, we can draw the following conclusion in hypotheses testing:

a) The Sales & Marketing Promotion variable significantly affects the E-Satisfaction variable because the T-Statistic value is 2.855 > 1.96, and the p-value is 0.004 < 0.05. Thus, hypothesis H1 can be accepted.

b) The Sales & Marketing Promotion variable significantly affects the Brand Trust variable because the T-Statistic value is 2.267 > 1.96, and the p-value is 0.023 < 0.05. Thus, hypothesis H2 can be accepted.

c) The E-Service Quality variable significantly affects the E-Satisfaction variable because the T-Statistic value is 4.735 > 1.96, and the p-value is 0.000 < 0.05. Thus, hypothesis H3 can be accepted.

d) The E-Service Quality variable significantly affects the Brand Trust variable because the T-Statistic value is 5.140 > 1.96, and the p-value is 0.000 < 0.05. Thus, hypothesis H4 can be accepted.

e) The Brand Image variable significantly affects the E-Satisfaction variable because the T-Statistic value is 2.668 > 1.96, and the p-value is 0.008 < 0.05. Thus, hypothesis H5 can be accepted.

f) The Brand Image variable significantly affects the Brand Trust variable because the T-Statistic value is 4.763 > 1.96, and the p-value is 0.000 < 0.05. Thus, hypothesis H6 can be accepted.

g) The E-Satisfaction variable significantly affects the Repurchase Intention variable because the T-Statistic value is 4.686 > 1.96, and the p-value is 0.000 < 0.05. Thus, hypothesis H7 can be accepted.

h) The Brand Trust variable significantly affects the Repurchase Intention variable because the T-Statistic value is 3.476 > 1.96, and the p-value is 0.001 < 0.05. Thus, hypothesis H8 can be accepted.

i) The Sales and Marketing Promotion variable does not significantly affect the Repurchase Intention variable because the T-Statistic value is 1.200 < 1.96, and the p-value is 0.230 > 0.05. Thus, hypothesis H9 can be accepted.
accepted. Sales and marketing Promotion requires intervening variables to get to Repurchase Intention. The results of bootstrapping tests that have been carried out, Sales & Marketing Promotion has a T-Statistic value of 2.519 > 1.96 and p-values of 0.012 < 0.05, so that E-Satisfaction can be a good intervening variable with a T-Statistic value of 2.291 > 1.96 and p-values of 0.022 < 0.05.

j) The E-Service Quality variable significantly affects the Repurchase Intention variable because the T-Statistic value is 4.197 < 1.96, and the p-value is 0.000 < 0.05. Thus, hypothesis H10 can be accepted.

k) The Brand Image variable significantly affects the Repurchase Intention variable because the T-Statistic value is 4.768 < 1.96, and the p-value is 0.000 < 0.05. Thus, hypothesis H11 can be accepted.

4.4 Importance performance map analysis

Importance Performance Matrix Analysis (IPMA) is used to improve a management activity. IPMA is measured based on a structural model where the importance value is obtained from the total effect received by the construct and its work value. Figs. 3-5 show the IPMA of intervening variables E-satisfaction and brand trust with repurchase intention.

Based on the IPMA, there are still indicators in "Concentrate Here", which means that the total effect is high, but the performance is still low. In this sense, indicators in "Concentrate Here" are good targets for improvement for all exogenous variables. Fig. 6. is a recap of indicators included in the "Concentrate Here". Based on Fig. 6, five indicators are included in the concentrate here: Promotional Messages, Efficiency, Privacy, Uniqueness, and Usefulness. These indicators are good alternative targets if companies intend to improve their performance. In this case, it does not focus on repurchase intention alone because the E-Satisfaction and Brand Trust variables directly and significantly affect Repurchase Intention, so the performance indicators of these two variables need to be improved as well.

5 Conclusion

This research has explored determinant factors influencing customer decisions to repurchase telemedicine services in Indonesia. Based on the hypotheses set and tested, variables of Sales and Marketing Promotion, E-Service Quality, and Brand Image affect E-Satisfaction and Brand Trust. Meanwhile, E-Service Quality, Brand Image, E-Satisfaction, and Brand Trust affect Repurchase Intention. Meanwhile, the Sales and Marketing Promotion variable requires the E-Satisfaction to intervene in Repurchase Intention. Based on IPMA in the Halodoc case study, companies in telemedicine could focus on indicators of Promotional Message, Efficiency, Privacy, Usefulness and Uniqueness.
as improvement targets to retain customers' loyalty to repeat purchase their services.

References

2. Deloitte Report, digitising indonesia's health care sector, July (2022)