Biodegradable Polymer Biomaterials for Tissue Engineering Applications: A Critical Review

BK Aishwarya1*, Revathi V2, Navdeep Singh3, Lijosh Mathew4, Koushal Dhamija5, Mohammed H. Fallah6, Ravi Kalra7

1Institute of Aeronautical Engineering, Dundigal, Hyderabad, India
2Department of Applied Sciences, New Horizon College of Engineering, Bangalore, India
3Lovely Professional University, Phagwara, India
4Department of Electrical and Electronics Engineering, Mangalam College of Engineering, Kottayam, Kerala
5Lloyd Institute of Management and Technology, Greater Noida, Uttar Pradesh, India-201306
6Department of Structural Techniques Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq
7Lloyd Institute of Engineering & Technology, Knowledge Park II, Greater Noida, Uttar Pradesh 201306

Abstract. This critical review explores the application of biodegradable polymer biomaterials in tissue engineering, highlighting their potential to revolutionize regenerative medicine and tissue substitute. Biodegradable polymers, due to their ability to mimic the extracellular matrix, offer a sustainable alternative for the development of tissue scaffolds that degrade at a rate matching new tissue formation. This review systematically covers the evolution, types, and applications of those materials, addressing both natural and synthetic polymers. Special attention is given to the fabrication techniques, along with 3-d bioprinting and nano-fabrication, that allow the introduction of scaffolds tailored for unique tissue engineering packages. The evaluation discusses the contemporary demanding situations, together with the balance among mechanical properties and biodegradability, and the mixing of scaffolds with host tissues. Furthermore, it delves into future directions, including the development of hybrid biomaterials and the incorporation of bioactive molecules to enhance tissue regeneration. The advancements in biodegradable polymer biomaterials constitute a massive step in the direction of the development of more effective and personalised processes to tissue engineering.

Keyword: Biopolymers, tissue-engineering, regenerative medicine, 3D-printing, application, fabrication.

*Corresponding author: kaishwarya21@gmail.com
1 Introduction

The fields of regenerative medicine along with tissue engineering are gaining traction as potential therapies for a range of illnesses, including cancer, injuries, infections, inflammatory diseases, and congenital abnormalities. Novel biomaterials and technologies are being developed by researchers to promote tissue regeneration. In order to promote tissue development, biodegradable substances must be chosen carefully and their biological, physical and chemical characteristics, and design characteristics must be taken into considerations [1]. Tissue substitution enhancement, assistance and medication administration are applications for polymeric biomaterials. The process of tissue engineering is shown in Fig. 1. Substances that are partially or fully biodegradable are preferable to those that are biostable. The goal of current scaffold-based tissue engineering therapy strategies is to regenerate and repair the target tissue. Researchers and engineers are creating novel scaffolds that imitate the structural properties of extracellular matrix found in nature, using both natural and synthetic polymers. Four types of materials are used in the design and construction of biodegradable synthetic scaffolds: biomimetic materials, freshly synthesized or researched polymeric biomaterials, unique di- and tri-block polymers, and common clinically proven polymers [2]. Since the middle of the 20th century, biodegradable polymers have been utilized in medicine to create in vivo resorbing sutures. After implanting them, they were later investigated for bone surgery in the 1990s because of possible foreign body responses. This gave rise to the false belief that osteolysis or inflammation would always result from degradable polymers. These days, biocompatibility and bio functionality expertise have allowed these polymers to be customized for certain uses. But the wider picture of bio functionality—which includes mechanical adaptation—has received less attention [3].

![Fig. 1. Process of Tissue Engineering](https://example.com/fig1.png)
Enhancing bio functionality might increase the safety and usefulness of degradable polymers in tissue technical fields. This includes improving biomechanical stability, visibility, sterilizing, and preventing the development of fibrotic tissue and foreign body responses. In situ tissue engineering, biodegradable polymers play a critical role by acting as transient templates for cell signaling and dictating the results of tissue remodeling. Additionally, these scaffolds display time, the fourth dimension, whose characteristics are always changing as they deteriorate. The fundamental properties of biodegradable polymers are examined in [4], together with current developments in the production of composite scaffolds made of biodegradable materials for in situ tissue repair and regenerative healthcare. It covers the characteristics, functional alterations, and localized consequences of degradation on adjacent tissue of implantation biodegradable biomaterials in the in vivo context.

2 Methods for synthesizing biodegradable polymer

The usage of biodegradable polymers in packaging components is growing, since their ability to break down naturally plays a crucial role in their suitability for use in a range of biomedical applications. These polymers have the power to lower expenses, increase biodegradation rates, and decrease trash. The microbiological generation of poly(hydroxyalkanoate) and the chemically produced creation of polyesters have been the focus of [5], which has highlighted the promise of biodegradable substances in numerous sectors. Materials that decompose naturally have application in several fields such as agriculture, medicine, and packaging. Polymers that are biodegradable have garnered more attention in recent years. One can distinguish between two types of biodegradable polymers: natural and manufactured polymers. Certain polymers are made using feedstocks that come from either biological (renewable resource) or petroleum (non-renewable resource) sources as depicted in Fig. 2. Polymers made from natural substances often have less benefits than manufactured ones [6]. An overview of the many biodegradable polymers that are now in use, their characteristics, and recent advancements in their synthesis and uses are provided in the review that follows. Natural or synthetic biodegradable polymers have grown in significance in biomedical applications because of their biocompatibility and biodegradability. With their customizable designs, these adaptable materials have found a wide range of uses in medical and biotechnology.
An overview of the structure, methods of synthesis, and characteristics of numerous synthetic biodegradable polymer types is given in [7]. It also covers current improvements in these polymers' functionalization and response techniques, as well as possible future advancements. The biodegradable properties of polyesters and the adjustable functions of tertiary amines are combined in poly (amino ester)s (PAEs), synthetic polymers containing ester linkages and tertiary amines. PAEs have a variety of qualities, including stimulus response, water solubility, biodegradability, and biocompatibility. As they develop, they will become a new class of biodegradable polymer materials that will be utilized in biological applications such as medication and gene delivery. It is anticipated that a novel class of PAEs called N-acylated PAEs would grow into novel biopolymer platforms. MAP, SZWIP, ROP, and polycondensation are examples of synthesis techniques. Due to their special qualities, magnetic nanoparticles (MNPs) have drawn interest because they work well in biological and drug delivery applications. When used with biodegradable polymers like polycaprolactones (PCL), they are very helpful. The manufacture of magnetic iron oxide nanoparticles, PCL and magnetic material composites, and their uses in drug delivery, cancer therapy, wound treatment, hypothermia, and engineering of bone tissue are covered in [8]. The study also emphasizes how magnetic nanoparticles mixed with other man-made polymers might have promise. The machinability, uniformity, and highly controlled degradation features of synthetic degradable polymer anti-tumor bone healing materials have drawn attention to their research. The effectiveness of these materials is being altered by novel approaches like as genetic engineering, photothermal treatment, magnetothermal therapy, nanotechnology,
among others 3D printing, and anti-tumor medication delivery. The application of upconversion nanoparticles (UCNPs) as photoluminescent nanomarkers in scaffolds for non-invasive tissue-engineered structure monitoring and visualization in live creatures is investigated in [9]. The scientists created and examined scaffolds using synthetic and natural polymers, adding β-NaYF4:Yb3+, Er3+ nanocrystals. A histomorphological examination showed that the surrounding tissues had very mild inflammatory reactions. A reasonable association between photoluminescent and histomorphological data was obtained by the investigation. Fibrous tissues having a restricted ability to regenerate, ligaments and tendons frequently necessitate surgical operations. Tissue engineering techniques have been created employing blends, hybrids, composites, and biodegradable polymers to address this. Various textile techniques such as twisting, tying knots and knitting, together with fiber-based scaffolds, have been employed in tendon and connective tissue engineering.

3 Fabrication techniques for creating biomaterial scaffolds and constructs

A potential method for repairing injured muscle tissue following surgery or trauma is the use of 3D tissue constructions. Biomaterials and cells combined with nano- and micro-fabrication methods may be used to create 3D architecture and function that can be customized. In order to enhance regeneration and restore function, more research is required to increase the likeness of function and architecture to natural muscle tissues [11]. Researchers have been gazing at the possible uses of cellular spheroids in scientific fields. They have benefits over hydrogels as well as cellular monolayers, including high cell densities and direct cell-cell interactions. Spheroid civilizations, however, may be basic and unruly. In order to address this, spheroid formation and operation, as well as their construction into tissues for therapeutic purposes and tissue models, have been regulated by biomaterials [12-16]. Techniques such as melt electrowriting and 3D bioprinting have been applied to create implantable structures and large-scale tissue models. The goal of tissue engineering is to replace or regenerate tissue that has been damaged. Artificial tissue and tissue engineering of bones depend on the creation of scaffolds and the choice of biomaterials. Scaffolds must possess mechanical qualities that allow them to support a person's weight and non-hazardous qualities like biocompatibility along with biodegradability. Because of its intricacy, 3D printing is more suited for bone tissue engineering. Future bone tissue engineering will depend on striking a compromise between the choice of biomaterial and the production technique [17]. Biomaterials can be composites, metal, polymers, or ceramics. One major problem in tissue engineering and regenerative medicine is the provision of oxygen in created constructions. This is because spontaneous blood vessels grow slowly and because proper oxygen levels must be maintained throughout storage and transit. Encasing oxygen-generating chemicals in scaffolds, resolving side effects, and attaining continuous oxygen release are examples of recent techniques [18]. In tissue engineering, biomaterials—in particular, decellularized extracellular matrix, or dECM—are essential [19-21]. Their mechanical characteristics could not, however, satisfy the demands of a certain tissue. The development of hybrid biomaterials that combine dECM with silk fibroin (SF) is underway. The goal of these blends is to combine the benefits of dECM and SF at the ideal cross-linking density and concentrations. Their promise for therapeutic translation is
recognized, and they have been employed in tissue regeneration for a variety of soft tissues. Tissue engineering has benefited greatly from the tremendous advancements in three-dimensional (3D) printing technology. Despite the enormous promise of 3D printing, the limited mechanical strength of the materials makes it difficult to design scaffolds with intricate 3D structures, especially when using soft materials [22]. Sacrificial materials have recently come to light as a potential remedy for this problem since they may be used as templates or temporary support to create scaffolds with complex geometries, porous structures, and interconnecting channels that won't collapse or deform. The field of tissue engineering focuses on creating biomaterials that can replace damaged organs or tissues. These substances interact with bodily tissues in a medicinal or investigative capacity. In a three-dimensional bioenvironment, scaffolds offer extracellular matrices that support tissue regeneration by promoting cell migration, adhesion, and proliferation after in vivo implantation. Growing research on the integration of biological implants with host tissues is producing more sophisticated scaffold manufacturing methods [23-24]. Bioactive scaffolds that are unique to defects may be created using degradable polymers through the application of additive manufacturing capabilities and orthogonal chemical functionalization techniques, which are employed in tissue engineering and regenerative medicine. Processing issues do arise, though. A guide to creating biodegradable polymer-based scaffolds is offered by [25], which covers material selection, production techniques, and applications tailored to certain tissues. The process of freeze drying improves the functionality and stability of biomaterials based on cells, making it easier to sterilize them for use in medical settings. This method is very helpful for creating 3D cell constructions without scaffolds that may be utilized as materials for bone grafts. According to [26], freeze-drying sucrose-containing phosphate buffer is appropriate for maintaining the activities of proteins and minerals in the constructions. Cur_WPI, a freeze-dried biomaterial derived from curdlan and whey protein isolate, was created for the pilot project with the intention of using it as a scaffold for matrix-associated autologous chondrocyte transplantation [27]. The biomaterial preserved the distinctive phenotypic of human chondrocytes while promoting their survival and proliferation. It was distinguished by its porous structure, Young's modulus, and degradability. It also encouraged chondrocytes to produce markers unique to cartilage. More in vivo and in vitro research is required to completely understand its medicinal potential. Cartilage tissue can mend itself but needs further care since it lacks neurons and blood arteries. Tissue engineering is the process of creating antimicrobial tissue based on titanium dioxide, hyaluronic acid, and alginate using 3D printing and freeze-drying methods. According to mechanical assessments, titanium dioxide enhances wettability, hardness, and tensile strength. Analysis using scanning electron microscopy and X-ray diffraction validate that the porosity percentage of the nanocomposite scaffold is between 77% and 82%. Its potential use as a multilayer bone filler is supported by the triploid amorphous structure's resemblance to actual human bone tissue [28-31].

<table>
<thead>
<tr>
<th>Aspect</th>
<th>Methods</th>
<th>Materials</th>
<th>Advantages</th>
<th>Future Directions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Tissue Construction</td>
<td>Nano- and micro-fabrication</td>
<td>Biomaterials and cells</td>
<td>Customizable 3D architecture; potential for</td>
<td>Enhance regeneration and architecture</td>
</tr>
</tbody>
</table>

Table 1. Advancements in Tissue Engineering: a comparative analysis
<table>
<thead>
<tr>
<th>Cellular Spheroids</th>
<th>Tissue model integration, therapeutic application</th>
<th>High cell density biomaterials</th>
<th>High cell densities; direct cell-cell interactions</th>
<th>Improve spheroid formation, operation, and construction for therapeutic purposes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Tissue Engineering</td>
<td>3D bioprinting, melt electrowriting</td>
<td>Composites, metals, polymers, ceramics</td>
<td>Supports weight; biocompatible and biodegradable</td>
<td>Balance between biomaterial choice and production technique</td>
</tr>
<tr>
<td>Oxygen Provision in Constructs</td>
<td>Encasement in scaffolds</td>
<td>Oxygen-generating chemicals</td>
<td>Resolves side effects; continuous oxygen release</td>
<td>Improve oxygen levels maintenance during storage and transit</td>
</tr>
<tr>
<td>Soft Tissue Regeneration</td>
<td>Hybrid biomaterial development</td>
<td>Decellularized ECM, silk fibroin</td>
<td>Ideal cross-linking density; beneficial for various soft tissues</td>
<td>Develop hybrid biomaterials for improved therapeutic translation</td>
</tr>
<tr>
<td>Scaffold Design in 3D Printing</td>
<td>Use of sacrificial materials</td>
<td>Soft materials with complex geometries</td>
<td>Creates scaffolds with intricate structures and interconnecting channels</td>
<td>Enhance materials to design intricate 3D structures without collapse</td>
</tr>
<tr>
<td>Biomaterials for Tissue Engineering</td>
<td>Scaffold manufacturing advancements</td>
<td>Bioactive, degradable polymers</td>
<td>Supports tissue regeneration; promotes cell migration, adhesion, and proliferation</td>
<td>Employ additive manufacturing and orthogonal chemical functionalization techniques</td>
</tr>
<tr>
<td>Freeze-Drying for Biomaterials</td>
<td>Freeze drying method</td>
<td>Cells-based biomaterials</td>
<td>Improves functionality and stability; easy sterilization</td>
<td>Extend applications to more materials for medical settings</td>
</tr>
<tr>
<td>Cartilage Tissue Engineering</td>
<td>Matrix-associated autologous chondrocyte transplantation</td>
<td>Cur_WPI (Curdlan and whey protein isolate)</td>
<td>Promotes chondrocyte survival and proliferation; produces cartilage-specific markers</td>
<td>Conduct more in vivo and in vitro research</td>
</tr>
<tr>
<td>Antimicrobial Tissue Creation</td>
<td>3D printing, freeze-drying</td>
<td>Titanium dioxide, hyaluronic acid, alginate</td>
<td>Enhances wettability, hardness, tensile strength; similar to human bone tissue</td>
<td>Explore as multilayer bone filler and improve care for self-mending tissues</td>
</tr>
</tbody>
</table>

Table 1 shows, 3D tissue construction, cellular spheroid integration, bone tissue engineering, oxygen provision in constructs, soft tissue regeneration, scaffold design in 3D printing, bioactive polymers for scaffold manufacturing, freeze-drying for biomaterials, cartilage tissue engineering, and antimicrobial tissue creation are all advancements in tissue engineering.
These methods enhance regeneration and architecture similarity to natural tissues, improve oxygen levels, and promote cell migration, adhesion, and proliferation [32]. Additionally, advancements in scaffold manufacturing and biomaterials, such as bioactive polymers, can improve functionality and stability in medical settings.

4 Tissue-specific applications

In tissue engineering, biomaterials—in particular, decellularized extracellular matrix, or dECM—are essential. Their mechanical characteristics could not, however, satisfy the demands of a certain tissue [33]. The development of hybrid biomaterials that combine dECM with silk fibroin (SF) is underway. The goal of these blends is to combine the benefits of dECM and SF at the ideal cross-linking density and concentrations. Their promise for therapeutic translation is recognized, and they have been employed in tissue regeneration for a variety of soft tissue [34]. For the purpose of enabling cell infiltration, mechanical compliance, and the diffusion of medicinal agents, porosity is an essential material characteristic in implants and tissue scaffolds. In the event of a foreign body reaction (FBR), it encourages positive tissue responses, such as little fibrous encapsulation. On the other hand, it may also result in a rise in calcification and biofilm development. Emphasizing the importance of tissue context in biomaterial engineering, [35] addresses the characteristics of porous materials, their production processes, and their impacts on different tissues [36]. According to soft tissue adhesives are utilized to seal and heal a variety of organs; therefore, materials that are highly resistant to uniaxial or multiaxial stresses must be chosen [26]. Aminated star polyethylene glycol and dextran aldehyde can be used to create co-polymeric hydrogels that have tailored adhesion properties for different organs and tissues. Material aldehyde density may be quickly determined using atomic force microscopy (AFM), allowing for quick material selection [37]. Failure strength by itself, however, is not a reliable indicator of ideal in vivo responsiveness. To find putative regulatory target genes of transcription factors (TFs) unique to photoreceptor cells, a computational method was devised. The strategy was predicated on the theory that retina-specific TFs are more likely to target genes linked to the retina. Three retina-specific TFs, CRX, NRL, and NR2E3, were subjected to the approach, and a number of possible targets were identified. In 5/5, 3/5, and 4/5 experimental experiments, CRX regulation was seen.

5 Conclusion

This critical review emphasizes the vital role of biodegradable polymer biomaterials in the development of tissue engineering. It highlights the development from traditional to advanced scaffolds that carefully mimic the natural extracellular matrix, promoting improved tissue regeneration. The integration of novel fabrication strategies and the improvement of hybrid materials had been recognized as key elements using the field forward. However, challenges along with optimizing mechanical homes, degradation quotes, and biocompatibility still stay. Future research need to concentrate on addressing those challenges to absolutely harness the capability of biodegradable polymers in regenerative medication.
• Biodegradable polymers are critical for growing scaffolds that help effective tissue regeneration.
• Advances in fabrication strategies, consisting of 3-d bioprinting, decorate the mimicry of the natural extracellular matrix.
• Hybrid biomaterials represent the future of tissue engineering, combining the strengths of different substances.
• Challenges remain in balancing mechanical strength, degradation rates, and biological compatibility.
• Future research is crucial for overcoming those demanding situations and unlocking the total ability of biodegradable polymers in tissue engineering.

References

combustion and emission characteristics of a CRDi diesel engine fueled with WHDPE oil/diesel blends. Fuel, 278, 118304.

