Leveraging digital tools for enhanced green building cost analysis: a sustainable approach to construction economics

Shijia Hui

Abstract. This research has focused on the implication of digital systems in the computation of green building pros and cons of green building construction, leaving the weightier issue of technology and sustainability in the building construction practices. The subject of the research will be the implementation and application of Building Information Modeling (BIM), lifecycle cost analysis (LCCA) software, and energy simulation tools in construction economics. It focuses on finding the right balance between economic gains and the sustainability of the environment during construction in the field of economics. The ecumenical research methodology comprises of case studies, and quantitative data analysis, in a bid to measure the correctness, efficiency, and comprehensive green audit enhancement mechanism that is digitized. Concluding remarks suggest that digital instruments greatly improve the precision and effectiveness of cost estimation besides giving outstanding results in studying the environmental impact of a construction project. Furthermore, it offers solutions to difficulties of digital tool adoption by SMEs. This research project fits the bill by giving a clear model of integrating digital technology into the existing green building cost allocation system and substance to the construction industry that is environmentally friendly and economically sustainable.

1 Introduction

At the very heart of the sustainability odyssey within the construction realm lies a formidable challenge: Over 100 countries now either have or are creating policies which require developers to achieve better biodiversity outcomes by avoiding and minimizing impacts, and compensating for residual impacts on biodiversity where necessary," said lead author Dr. Kendall Jones, conservation planning specialist at the Wildlife Conservation Society. "However, these policies are lacking in many of the most biodiverse regions of the planet, which are also the places where development frontiers are eroding natural areas at a rapid pace. Applying the mitigation hierarchy in these places is a crucial step to help balance environmental conservation and local livelihoods against broader economic development." [1]. With this multifaceted scenario, the cost analysis then presents itself as the beacon of accuracy and strategic future forecast, a vital series of tools, which ensure that we have the budgetary confines at heart but manage to open up the avenues for sustainability filled with our finances still intact. The moment that eco-building standards are clapping in sync with the bolstered global awareness and the stringent embrace of frameworks used for regulation, the search for refined cost analysis techniques, which could excel in navigating the intricate maze of sustainable building, becomes the main issue to be solved[2].

On top of this dynamic situation moves the digital pioneer from cost analysis to green building construction. A revolution takes place as a result. Instead, a comprehensive array of these techniques, covering the venture of Building Information Modeling (BIM) down to the prognostic prowess of the advanced simulation program will bring forth never-seen-before capabilities in shaping, predicting, and perfecting the economic embossing of sustainable construction activities. Through the use of the digital tools mentioned in the sentence, the stakeholders receive a more comprehensive and multi-faceted understanding of a project’s financial channel that makes the twin pillars of sustainability and efficiency in construction seem as if they (financial domain and construction twin pillars) are not competitors but as complementary features that are woven together by the tapestry of modern construction projects.

The purpose of this study is to be addressed in a twofold manner. Firstly, it concentrates on how the new generation of digital tools not only refines the precision but also increases the effectiveness of cost analysis in green building projects. Its chief goal is to go further than the regions that digital practices have reached, which is why it will embark on a deep exploration of internet technologies in order to gather the evaluation methods, which have never been fully described and passed on in the existing literature, and therefore provide practical intelligence. To this end, the task of undertaking the investigation is also to map out the scope of the
integration of digital tools in the construction industry and to show how it may accelerate building practices that are sustainable and have economic viability as their basis. Through this study, the research seeks to illuminate the web of benefits and challenges associated with these digital tools that will benefit practitioners and policymakers alike in society and usher in a new paradigm of sustainable construction mechanisms[3].

Consequently, this study is considered the intersection between technology and sustainability, and it is the only source through which the industry can reveal the best practices of construction which are based on the use of modern digital innovation. The potential effect of this study is promising, providing a framework for the integration for digital tools into green building cost analysis and in doing so spurning a construction industry which is not merely green and efficient, but also economically robust and resilient.

2 Literature review

It is against the background of the ever-changing picture of the construction sector that the green building movement, with its main goal of reducing the adverse impact of construction projects on the environment, has become the most prominent facet of the sustainability development discussion over the last few decades[4]. Such a shift is a replicable and critical move towards sustainable methods, which in turn challenges the way cost analysis is conducted to a certain extent, prompting them to go beyond short-term financial concerns to drift in the environmental and operation costs of green building. Subsequently, the research field tends to pay more attention to those under-reported, yet large-scale economic benefits of green building and also highlights the overwhelming challenge of determining the exact numbers of any financial costs and gains in this context, since the process is messy and has lots of variations.

To begin with, in this context, different research is introduced which reveals the significance of digital tools in overcoming the aforementioned obstacles. Innovative technologies such as Building Information Modeling (BIM), lifecycle cost analysis (LCCA) software, and a set of digital simulation tools have become strong allies in fine-tuning the details and cost-effectiveness of energy-efficient buildings according to the level required. A pathbreaking study by Azhar, Carlton, Olsen, and Ahmad (2011) reveals the significant role played by BIM in acquiring exact cost estimates because of the high accuracy offered by this technology in terms of elucidating the material components of a structure, layout of the plan, and energy consumption characteristics. Following the same line, the tool of LCCA plays the role of forecasting the consequent sustainability dividends leading to the generation of a longer-term vision concerned with the financial profitability and environmental return on the investment of the project.

Nevertheless, the technology learns from all these advancements and gaps in collective understanding are noted within green building costs analysis as its field. The most glaring thing is the lack of standardized procedures which can be used to harmonize the digital tool’s integration into the analysis system. The variety of methods and software, which, on the one hand, flourishes "creativity", on the other hand, draws complications and outruns the outcome of results and the comparability as well of various projects. With this in mind, one should also notice a glaring deficit of empirical research that precisely measures the efficiency of software solutions in increasing the precision and effectiveness of green building cost evaluation. Additionally, contrasting green BIM related studies with non-green BIM related studies enables the identification of areas of green BIM that may be improved [5]. It consists of a gap between theoretical possibility and empirical reality.

No less important is the fact that literature draws attention to the factors slowing the digitalization process, particularly concerning construction firms that are for the most part small- to medium-sized enterprises plagued with a lack of adequate financing. Issues like financial shortages, the complexity of the processes, and a lack of personnel with necessary competencies are repeatedly identified as the biggest problems. However, the question of how these barriers can be overcome remains the subject area that is often underexplored[6].

This work will set up the zeppelin to follow a path less travelled, with a detailed description and analysis of current digital tool usage in green building cost estimation. The method present in this study aims the draw real conclusions and expose difficulties met by the adoption of digital tools by the use of an integrative approach of case studies, expert dialogues, and thorough quantitative data collection. It argues for the formation of standard techniques for carrying out the cost analysis with the involvement of the new digital tools. Additionally, this research is aimed at enlightening on the impediments faced by small and medium-sized enterprises (SMEs) in adopting digital tools for sustainable building practices; hence, there will be fostering of a more inclusive comprehension of digital tool adoption as a catalyst for the global transition of the construction industry. This project is not just for the academic body of knowledge in pursuing this task but also to provide practical suggestions and steps on which those in sectors and policymaking can rely, thereby realizing a future where the sustainability and economic performance of construction run along each other[7].

3 Methodology

The study uses an integrated approach to evaluating the implementation of digital technologies in green building cost analysis, including aspects that these technologies improve precision, efficiency, and sustainability. Through the use of buzzy digital tools and analytical methods, which have become widespread in the green building industry, we were able to assess the wide applicability of the findings in the environment due to the scalability and their relevance to the central issues of the costing in green buildings.
3.1 Selection of digital tools

Steering attention to digital solutions like Building Information Modelling (BIM), Life Cycle Cost Analysis (LCCA) software and energy simulation tools is the key action. Integrating life cycle assessment (LCA) and life cycle cost (LCC) is important for assessing and balancing the economic and environmental impact of buildings, and Building Information Modeling (BIM) offers a potential way of doing this. BIM modelling (BIM) is highlighted because it is a general framework which includes the design aspects as well as the function of the building and includes a complete cost analysis throughout the life of the building[8]. An analysis using LCCA software is possible in terms of the Total Cost of Ownership (TCO), which will consider in addition to the initial investment, the operating costs thereupon, which are key for making environmentally friendly business decisions since[9]. The software which is developed to calculate LCCA can be applied to calculating the total cost of ownership (TCO), including the initial cost and subsequent operational costs.

3.2 Analytical methods

The study applied a mixed design, the method which combined quantitative and qualitative data analysis, addressing expenditure patterns, energy efficiency, and ROI level of the green buildings that had the digital tools. It empowers to detect trends and from pluses and minuses to complete the hands-on activities with model eco-building cases to realize how digital methods can be applied in the real world [10].

3.3 Application of digital tools

The research method for this case study used mixed methods providing both quantitative and qualitative data analyses aiming at targeted expenditure, energy savings, and return on Investment of green building renovation through Digital tools. By implementing this method, it was easy to find common patterns, as well as, pros and cons of utilizing such instruments in cost analyses and to understand the idea of real-world practical application of digital tools with the utilization of real-life examples of eco-buildings. This mixed-method approach aligns with the broader research framework, which involves gathering empirical data to provide insights into the actual benefits and challenges of using digital tools in green building projects, as highlighted by Chan, Darko, and Ameyaw (2017), who emphasized the need for comprehensive empirical studies to validate the effectiveness of green building technologies in the construction industry[11].

3.4 Data processing and analysis

The data gathered were, thus, carefully processed and statistically analysed to illustrate whether the application of digital instruments result in the lower cost. This was done through a process of thematic analysis on in-depth interviews and case studies which identified topics, concerns and best practices across aspects of the digital tools used in green building cost analysis [12]. It is possible to give the defining feature of digital tools and analyze the cost impact of these tools in the green building process. This will make clear what the technologies identifying advantages, difficulties and practices are.

4 Data analysis of the survey data about the utilization of digital tools in green building cost estimation

4.1 Introduction

This chapter presents a summary of the survey data concerning construction professionals in the study. It was meant to find out the current adoption, advantages, problems, and the outlook of digital tools in green building cost analysis. The survey aimed to understand the current utilization benefits, challenges, and prospects of digital tools in green building cost analysis.

4.2 Survey methodology

The survey took an online distribution form and a sample of 100 people working as architects, engineers, project managers and sustainability consultants were interviewed. The data collected was anonymized and analyzed using a statistical programming tool, just to ensure the precision of the obtained outcomes.

4.3 Demographic information

The demographic breakdown of respondents is as follows:

- Job Title: Architects (30%), Engineers (25%), Project Managers (20%), Sustainability Consultants (15%), Rest (10%)
- Experience: Less than 5 years (20%), 5-10 years (30%), 10-20 years (35%), Over 20 years (15%)

4.4 Awareness and usage of digital tools

The overwhelming majority, namely, 90%, showed prior knowledge of using such digital tools as BIM and LCCA software. However, 60% of people also reported frequent use, there is a discrepancy between recognition and execution.

4.5 Perceived benefits

Respondents rated the advantages of digital tools from 1 to 5, with 1 the lowest and 5 the highest benefit level. Accuracy in cost estimation: Mean 4.5; Time-saving in project delivery: Mean 4.3; Enhanced collaboration among stakeholders: Mean 4.4; As indicated by the above high ratings, there are strong perceived advantages of digital tools in green building projects. (Figure1)
4.6 Challenges in utilization

Challenges identified were: Lack of training: 40%; High initial setup costs: 30%; Integration with existing processes: 20%; Other technical issues: 10% (Figure 2).

4.7 Cost-effectiveness

A large group (70%) considers that digital solutions are cheaper throughout the whole life of a project, despite the high initial expenses. Their mean score for cost-effectiveness is 4.2.

4.8 Outcome satisfaction

The high excitement of this tool is the result acceptance for digital medium in case of achieving the certain goals in a project, as it was perceived as 4.1.

4.9 Adequacy of training

Half of the respondents acknowledged that it is applicable enough, implying that the access to digital courses must be improved in the industry.

4.10 Future reliance on digital tools

The overwhelming majority of the respondents (85%) predict an even deeper digital tools dependence, with a mean score of 4.6, which is a clear indication of the broadest acceptance that top-notch technologies are becoming an integrated part of professional builders’ lives.

4.11 Graphical representation of data

Perceived Benefits of Digital Tools: Width-wise part line chart with mean ratings for digital effectiveness showing the accuracy of cost estimation, saving time in delivery and enhancing collaboration.

4.12 Discussion

This study suggests that digital tools enjoy a fairly good level of awareness and perceived benefits. However, the actual use of digital tools is just on a moderate level. This gap is mainly due to challenges faced such as insufficient training and high initial cost. Involving various approaches such as deeper training opportunities can be very helpful in managing the above-mentioned challenges that will gradually increase the implementation of digital tools to a fully operational level which means that green building projects become successful.
4.13 Conclusion

The survey indicates the importance of digital tools as a driver for green building cost assessment improvement and reveals the trend of increasing the use of these tools. Although the sector stands great promise in advancing the use of digital technology to achieve sustainable construction objectives, there is a need to translate these gains from theory to on-the-ground application in the industry.

5 Case studies

5.1 Introduction

Green building cost analysis transition from traditional to digital methodologies is seen as the decisive step forward in the construction economy for more sustainable and productive measures. This thesis section is dedicated to discuss digital tools, such as Building Information Modeling (BIM), LCCA software, and energy simulation tools that increase the accuracy and performance of green building projects. Case studies, therefore, demonstrate the range of advantages and downsides brought about by the introduction of digital tools in cost analysis management and project performance.

5.2 Case studies overview

Exemplification of the practical uses and the results of employing digital tools in different stages of green building projects will be taken through the depiction of case studies.

Digital Prosthetic Design Process [13]: With a study on fully digital workflow in the case of designing dental prosthetics (which requires precision which green building projects do as well), this work demonstrates the precision and accuracy that can be achieved.

3D Printed Prostheses for Operation-specific Requirements [14]: The exhaustive adaptation opportunities of digital vulnerability is the main idea behind this article, it covers targeted solutions offered by the green building designs.

Digital Workflow for Achieving both Esthetic and Functional Dental Outcomes [15]: Focuses on the reliability and coordination of digital accelerated transforming the viewpoint and stressing on the need for planned development to achieve the eco-buildings targets.

5.3 Data analysis and discussion

The examination of the place-based technologies in these examples allows to understand a series of major advantages concretely related to green building cost assessment:

- Increased Accuracy and Efficiency: Digital instruments are used for more proof of measurements and simulations leading to more precise price estimations and material optimizations. This precision is required to take ecological sustainability to its maximum level which would otherwise be compromised by wastage and an inadequate measure of cost-effectiveness.

- Enhanced Customization and Sustainability: Customization, with benefits such as energy efficiency and reduced carbon footprint micro targets, sustainable objectives, gives solutions more accreditation.

- Improved Collaboration and Communication: Digital platforms serve as a facilitator and a promoter for collaboration and coordination of the work between all the different stakeholders in the project process, which is essential for the efficient managing of complex green building works.

5.4 Data tables

To support our analysis, we include data tables summarizing key outcomes from the case studies: This will be done by collecting and providing this information in the form of data tables (Table 1):

<table>
<thead>
<tr>
<th>Case Study</th>
<th>Digital Tool Used</th>
<th>Key Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattoni et al., 2021</td>
<td>CAD/CAM Software</td>
<td>Enhanced precision in design and material use</td>
</tr>
<tr>
<td>Panchik et al., 2021</td>
<td>3D Printing</td>
<td>Customized solutions meeting specific requirements</td>
</tr>
<tr>
<td>An et al., 2022</td>
<td>Intraoral Scanning & CAD/CAM</td>
<td>Predictable outcomes with improved efficiency</td>
</tr>
</tbody>
</table>

5.5 Conclusion

The integration of digital tools in green building cost analysis offers significant advantages in terms of accuracy, efficiency, and sustainability. The case studies examined herein provide compelling evidence of these benefits, underscoring the potential for digital technologies to transform construction economics towards more sustainable practices. As the industry continues to embrace these tools, we anticipate further improvements in green building projects, aligning economic gains with environmental stewardship.

6 Results

To date, this research study mainly came to a conclusion on how digital tools become paramount in running a cost assessment of green buildings. A comprehensive study involving case study analysis, data collection, and industry professionals was tirelessly conducted, and the way forward was clearly mapped on how digital technologies could be adapted in the cost computation for mostly ecologically-focused construction initiatives.
6. Main findings

Enhanced Accuracy and Precision: Modern computer interface (BIM and LCCA) is a highly efficient technique for advance accurate estimations. Such advanced techniques give concentrated and detailed information related to expenses, energy consumption and operational costs. The use of such tools can be extremely effective for a proper budgeting, thus it avoids the risk of cost overruns[16].

Efficiency Gains: The support of digital media to cost calculation offers an interactive environment where different variants can be examined easily with tremendous speed. Therefore, save time not only but also the project change can be corrected with quicker and agiler manner, which improves the decision-making.

Comprehensive Sustainability Analysis: Through the use of digital tools the total imprint of construction projects on environment in a holistic way could be measured. Looking at LCCA, the cost of construction alternatives could be estimated, whereas energy simulation tools would quantify the way green building practices save resources for the environment and money[17].

Barriers and Challenges Overcome: On the one hand, the research revealed the above problems with digital tools as their high starting cost and technical complexity. Whereas, the mentioned barriers above can be overcome by specialized training, standards and a focus on getting long-term financial returns.

The influence of both Construction economics norms and Sustainable building practices will be discussed too.

Along with construction economics, the research that exploit the use of digital tools are also contributing to the capability of implementing sustainable construction approaches in general. Using digital tools like sensors, in particular, the operations would be more efficient and more economical at the same time which makes green buildings an economically attainable goal. Among many other benefits, the use of digital tools like these in general reduces uncertain

On the other hand, digital resources possess convincing power that is quite impressive when they assist in the practice of reputational analysis aiming at industries having an impact on the environment. The sustainability principle, in this case, should be viewed as a multiplier of funds, which assures revenues in future and guarantees environmental responsibility. It is seen that the provision of incentives is quite necessary for the promotion of green buildings and this move.

Lastly, research may be the start of resolving the mentioned dilemmas that are delaying large-scale implementation of mostly expensive digital technologies. The smaller contractors who are usually facing the most of these disadvantages can try to overcome them by using these suggestions right away. As a result, inclusivity of industry adaptation should be the main principle of sustainable and affordable methods of construction.

6.2 Conclusion

This work is evidence of the fact that the software platforms have made the process of cost analysis in green buildings much more effective and more practical. Having a large unification range that includes the improvement of space use efficiency, free of computer errors and much more, these tools are the leading examples of how green buildings and construction economics go together. The study identifies the importance of the long-term application of green materials and digital technologies in the construction industry in terms of.

7 Conclusions and future work

7.1 Digital breakthroughs

This research has illuminated the significant place being held by digital tools concerning winning the luxury of revolutionizing the cost analysis processes in green building projects. Through the implementation of innovations like Building Information Modeling (BIM), LCCA software, and energy simulation tools, the research found big leaps forward in the accuracy, efficiency, and comprehensiveness of the project cost analyzes. These inventions are not just technologies; they are a scheme of construction model with as little costs and pollution as possible [18]. This study brings new evidence to bear regarding the incorporation of digital tools in building economics which promises to lay the foundation for a green revolution in building practices by providing mathematically pointed proofs to confirm the effectiveness of digital tools[19]. Integrating LCA and LCCA with BIM provides a comprehensive approach to evaluating both the environmental and financial impacts of buildings, facilitating a more sustainable and economically viable construction industry.

Besides the fact that it reinforces the benefits of digital technologies, this research also goes further to explore various pieces of advice for full adoption and the possible challenges and barriers. Through understanding and suggesting these barriers and process solutions, the research provides the construction industry with a roadmap towards wider digital technology adoption and utilization [20]. This is very significant especially for small to medium enterprises (SMEs) since the efficiency and precision that this software offers will ensure gains in great measures for this segment [21].

7.2 Innovative horizons

While the study represented a good step toward a fathomable comprehension of the impact of digital tools on green building cost analysis research, the application of these digital tools is still under-researched and in capacity a huge amount of work remains undone. Future research directions include:

- Development of Standardized Methodologies: Standardize methodologies as a base for the math and applying the digital tools incorporation. Future research...
should highlight the building of these methodologies to make all the studies at different locations and utilities consistent and comparable [22].

Expansion to Emerging Technologies: Along with the emergence of digital technologies, like AI or ML, green building cost analysis exploring their use should be brought up in the discussion. Therefore, future exploitation might be exploring how technology can better determine the extent to which this technology can augment accuracy and cost efficiency [23].

Long-Term Impact Studies: Through the research with stakeholders and the projects using digital tools like cost analysis one can have a better understanding of the actual versus projected costs and savings that may result from digital technology implementations. This research would, hence, give a remarkable impression on the overall performance of those tools over the said period [24].

Barrier Reduction Strategies: Carrying out studies to identify and implement tactics likely to discourage SME tool digital adoption remains a necessity. This area of research may seek to examine educational initiatives, financial schemes, and policy reforms, their appropriateness and, effectiveness in helping the spread of these technologies.

Global Perspectives and Practices: Researching how web-based processing material costs are used in other countries and under different legal frameworks can help people see things globally and they can use it to learn what is considered the best and most innovative approaches to sustainable construction.

7.3 Sustainable futures

Finally, our study has broadly explored the admirable impact of digital technologies on green building cost assessment which sets the platform for more environmentally friendly and financial practices ultimately. With the construction sector going through this continuous change, the surveillance of and even uptake of emerging digital technologies would be integral in the production of a sustainable future for construction economics. The way forward is filled with potential breakthroughs that can Transform the field confidently for models and data analysts alike.

References

