Analysis and Simulation of Boost-Flyback Converter for Renewable Energy Integration

Ravivarman Shanmugasundaram 1*, K. Sai Ramana 1, K. Akshay 1, K. Dilip 1 and Hardik Dahiya 2

1 Department of EEE, Vardhaman College of Engineering, Hyderabad, India
2 Department of Electrical Engineering, School of Engineering, RK University, Rajkot, India

Abstract. Analysis and Simulation of Boost-Flyback Converter for Renewable Energy Integration is mainly focusing on boosting and decreasing the voltages coming from the renewable energy sources. The proposed methodology combines the advantages of both Boost and Flyback topologies, providing enhanced efficiency, reduced voltage stress, and improved transient response. The Boost-Flyback Converter employs a two-stage topology, where the Boost stage is responsible for stepping up the input voltage, and the flyback stage facilitates energy transfer and output voltage regulation. The analysis includes a detailed examination of the converter’s operating principles, voltage and current waveforms, and control strategies. A comprehensive simulation study is conducted using advanced simulation tools to validate the converter’s performance under various operating conditions and load profiles.

1 Introduction

In recent years the energy consumption has been increased gradually, it is because of advancement in technology and different types of machinery, and increased living standards of humans, and increasing pollution. However, traditional ways to produce electricity is conventional sources, but in the recent years this conventional sources like coal, water rapidly decreasing. These findings are of particular interest to particular individuals and many scientists searching for renewable energy sources. Other notable categories of renewable energy are solar energy, wind energy, tidal energy, and bioenergy. The nonconventional energy sources are inexhaustible and not depletable.

In this renewable energy sources mostly used energy sources are solar and wind. It is essential to highlight the role of renewable energy in reducing greenhouse gas emissions and addressing climate change. But the main problem with this renewable energy sources is low output value which is unfit for many electronic gadgets or machinery.

Normally we use PV panels in solar energy source, which are used for converting solar power into useful voltage. For wind energy source we use large turbines, which converts mechanical energy into electrical energy. But the output power coming from these sources is very low and requires many panels and many turbines connect in series to increase the output. And it’s very costly to connect that many panels and turbines in series. The primary technological advancement in photovoltaic (PV) systems lies in the inverter, which can be categorized into two types: those with transformers and those without. Transformers in inverters offer galvanic isolation, protecting against leakage currents between the PV panel and the ground, though they decrease efficiency due to the associated losses. Conversely, inverters without transformers are less expensive, smaller, and more efficient, but they lack galvanic isolation, which can result in leakage currents. For this transformer less operation, Flyback back converter is used to give proper isolation to the circuit.

The transformer-less solution for PV systems is then divided into two types: two-stage topology and single-stage topology. Two-stage topology applies the power processing in two stages. It involves raising the low DC voltage that is supplied from the PV panel to a greater voltage that is used in the second stage by the DC/DC converter. Subsequently, this elevated DC voltage is converted into usable AC voltage by a DC/AC converter in the second stage. Conversely, single-stage topologies combine voltage boosting, maximum power point tracking, and DC-AC conversion into one unit. Comparative evaluations show that single-stage topologies offer several advantages including compactness, fewer components, lower cost, enhanced reliability, and improved efficiency [1–3].

This integration of renewable energy sources, such as solar and wind, into the power grid has become increasingly important as the world strives to transition towards a more sustainable and eco-friendly energy system. To harness the intermittent nature of these renewable sources and ensure a stable power supply, efficient and reliable power electronic converters are essential. One such converter that plays a crucial role in renewable energy integration is the boost converter and the flyback converter.

* Corresponding author: ravivarman@vardhaman.org
Generally, boost-flyback converter is a hybrid power electronic converter that combines features of both the boost converter and the flyback converter. This converter is particularly well-suited for renewable energy applications due to its ability to step up voltage levels efficiently, handle varying input voltages, and provide isolation between input and output. From that we can increase the output voltage of the low input voltage renewable energy source, that can be used from respective application.

1.1 Boost Converter Stage

Firstly, the operation begins with the Boosting stage. In this mode of stage, the input voltage coming from the source will increases to higher range value. The boost converter operates in a continuous mode, where energy is transferred from the input to the output in a controlled manner. Typically, the boost converter consists of an inductor, a switch, a diode and a capacitor are used. During the ON state of the switch, energy is stored in the inductor. When the switch is turned off, the diode conducts, and the stored energy is transferred to the output capacitor, resulting in a higher output voltage.

1.2 Flyback Converter Stage

The main use of this flyback converter is to provide an isolation in the circuit or respective device. In this paper a transformer less topology is being used, and for that, this flyback converter offers an isolation between the input and output voltages. The flyback stage will commence operation once the input voltage from the renewable energy source such as fuel cell or photovoltaic system rises to a higher level. Flyback converter stage adds isolation, making it suitable for renewable energy applications where safety and grid integration are crucial. The flyback converter stage operates by controlling the duty cycle of the switch, which in turn controls the energy transfer from the input to the output. Control strategies such as Pulse Width Modulation (PWM) are commonly used to regulate the output voltage and ensure stable operation [4-10].

This boost-flyback converter operates by combining the voltage boosting capability of the boost converter with the isolation features of the flyback converter. This hybrid approach makes it well-suited for renewable energy integration, allowing for efficient and safe power conversion in applications where varying input conditions and isolation are critical.

1.3 Significance and Advantages

The combination of boost and flyback converters in a single converter is known as boost-flyback converter. The renewable energy systems mostly integrate these two converters since it has various advantages. Hence it is widely used one in renewable energy systems.

The boost-flyback converter is capable of efficiently handling varying input voltages. The boost stage allows for voltage boosting, compensating for lower input voltages. The flyback stage provides isolation and flexibility in handling different voltage levels. Boost-flyback converter helps ensure a continuous and stable power supply despite variations in energy production. Boost-flyback converter has an ability to step up voltage levels enhances the converter's versatility in diverse renewable energy scenarios. The flyback stage of the converter provides electrical isolation between the input and output, ensuring safety for users and compliance with grid standards. Integrating boost and flyback stages into a single converter design leads to a more compact solution compared to using separate converters for boosting and isolation, and also reduces the components in the circuit. The combination of boost and flyback stages allows for effective control of power flow through the converter. Control strategies, such as Pulse Width Modulation (PWM), can be applied to optimize the power transfer from the input to the output.

2 Analysis and Design of Proposed Converter

The proposed converter topology is shown in Fig. 1. It consists of four switches, three inductors and three capacitors. The switches S₁ and S₃ are turned on simultaneously and the switches S₂ and S₄ are turned on simultaneously. The both pairs are operated in complimentary manner, such that if the power switch S₁ and power switch S₃ are turned on, the power switch S₂ and power switch S₄ will be in off state and vice versa.

![Proposed converter topology](image)

Fig. 1. Proposed converter topology

2.1 Operating Principle

The detailed explanation of the two operating modes is explained as follows and the typical waveforms are shown in Fig. 2.

2.1.1 Mode 1

In this state, the power switches S₁ and S₃ are kept in on state. Hence the inductor will charge with the input renewable energy source. In this mode, the current flows from the input source i.e., photovoltaic panel to the input inductor, Lin through switch S₁. During this time, the inductor stores magnetic energy, and it is determined by the input voltage from the solar photovoltaic panel and the duty ratio, D. In the other part of the circuit, the power switches S₂ and S₄ are kept in off state. The energy stored in the capacitors due to previous mode are transferred to the inductors and the output capacitor.
voltage will be available as output voltage of the converter.

Mode 2

In this operating mode, the power switches S2 and S4 are turned on by gating pulses. In this mode, the input capacitor will be charged by the energy available in the input inductor and the input voltage available in the solar photovoltaic module. In the later part of the circuit, while the power switches S1 and S3 are turned off by the controller circuit, the energy stored during previous mode in the inductors will be transferred to the capacitors and the load voltage will be same as the output capacitor voltage.

2.2 Design Equations

The proposed converter is designed according to the following design equations.

1.
 \[V_{Cin} = \frac{V_{PV}}{1 - D} \]
2.
 \[V_{Cout} = \frac{V_{PV}}{D} \]
3.
 \[G = \frac{2D - 1}{D(1 - D)} \]
4.
 \[V_{S3} = V_{S4} = \frac{V_{PV}}{1 - D} \]
5.
 \[V_{S3} = V_{S4} = \frac{V_{PV}}{D(1 - D)} \]
6.
 \[C_{in} = C_{o} = \frac{I_{in} D (1 - D)}{\Delta V_{Cin} f_{S}} \]
7.
 \[L_{f} = \frac{(V_{Cin} - V_{o}) D}{\Delta I_{L} f_{S}} \]
8.
 \[C_{f} = \frac{1}{L_{f} (2 \pi f_{c})^{2}} \]

where \(f_{c} \) is the cut-off frequency of the output low pass filter which is formed by using \(L_{f} \) and \(C_{f} \).

The above equations are used to design the proposed converter and the design specifications and the component values of the proposed converter are given in Table 1. Based on the requirements and specifications of the converter, the suitable values for the passive components are selected. The voltage conversion ratio and efficiency of the converter are all determined by these variables.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output power, (P_{o})</td>
<td>250 W</td>
</tr>
<tr>
<td>Input voltage, (V_{PV})</td>
<td>60 V</td>
</tr>
<tr>
<td>Output voltage, (V_{o})</td>
<td>160 V</td>
</tr>
<tr>
<td>Switching frequency, (f_{S})</td>
<td>50 kHz</td>
</tr>
<tr>
<td>Duty Cycle, (D)</td>
<td>0.75</td>
</tr>
<tr>
<td>(\Delta V_{c})</td>
<td>2%</td>
</tr>
<tr>
<td>(\Delta I_{L})</td>
<td>20%</td>
</tr>
<tr>
<td>Filter cut-off frequency, (f_{c})</td>
<td>2.4 kHz</td>
</tr>
<tr>
<td>Capacitors</td>
<td></td>
</tr>
<tr>
<td>(C_{in} = C_{o} = 3.3 \mu F)</td>
<td></td>
</tr>
<tr>
<td>(C_{f} = 2.2 \mu F)</td>
<td></td>
</tr>
<tr>
<td>Inductors</td>
<td></td>
</tr>
<tr>
<td>(L_{in} = 1 \text{ mH})</td>
<td></td>
</tr>
<tr>
<td>(L_{0} = 220 \text{ mH})</td>
<td></td>
</tr>
<tr>
<td>(L_{f} = 1.8 \text{ mH})</td>
<td></td>
</tr>
</tbody>
</table>

3 Simulation Results and Discussions

The initial step involves modelling of the Boost-Flyback Converter by the use of passive elements and semiconductor devices. This entails modelling the control circuitry, passive components (inductors, capacitors, resistors), and power semiconductor devices (MOSFETs, IGBTs). DC voltage source is included in the simulation model that represents the renewable energy source, such as a fuel cell, wind energy converter system or solar panel. This model ought to faithfully depict how the energy source behaves in various conditions. The proposed converter is simulated by using PSIM software and the simulation model is ash shown in Fig. 3.
In simulation, different scenarios are simulated to access the performance under different operating conditions. The simulation model reflects the characters of the components which are chosen in the simulation model.

The gating signals, output voltage, voltage across capacitors and voltage stress across switches waveforms are shown in Fig. 4. As per the design specifications the output voltage obtained in the simulation is 160V and the current is 1.56A and the output voltage ripple is around 0.7V which is a permissible value. The voltage stress across switches are more when compared to the conventional boost converter, whose values are for S1 and S2 is 321V, while for switches S3 and S4, it's 242V. Fig. 5 shows the simulation waveforms of load current and current through the inductors and current ripples are in permissible values.

In the phase of implementation, the prototype is designed based on the simulation outcomes and the finalized design is shown in Fig. 6. The testing is conducted to compare the simulation results with real time performances. It involves translating the theoretical design into a prototype in a several steps that are aimed at realizing the functionality and performance outlined in the design.

The components are selected during the designing the theoretical model. In the physical model the components must be specified ratings and quality standards to ensure the reliability and the compatibility. Printed Circuit Boards are designed to accommodate the
layout of the components and inter connections require for the boost flyback converter. When the PCBs are fabricated, the electronic components are assembled on the boards according to the design. The completed hardware prototype undergoes testing and validation to verify its performance against the design specifications. Various tests are conducted including the functionality tests, efficiency measurements, voltage regulation tests and transient response. The experimental waveforms such as capacitor voltages and load voltage are shown in Fig. 7.

4 Conclusions

This work gave the design and operating analysis of a boost-flyback converter topology. In this converter, the high step-up operation is obtained by combining boost converter and flyback converter by incorporating additional switches, capacitors and inductors. Due to this technique, the duty cycle of the load voltage is increased, which implies a higher value of average output voltage. It also reduces the voltage and current stress for the switching devices. A comparative analysis is also done between the proposed converter and the basic boost converter. The wave forms obtained by the simulation and the consequent analysis give the information that the effective stepping up of voltage is attained for the proposed converter. Thus, this is suitable for the higher load variations and high-power applications.

References

