Assessing Eco-Friendly Alternatives: Composite Fibers and Recycled Plastics for Sustainable Impact and Efficiency

Ravi Katre¹, Keval Bhavsar²*, Ahmed Salaam³, G. Mallikarjuna Rao⁴, Anandhi R J⁵, Atul Singla⁶, M Mahenderreddy⁷

¹Department of Civil Engineering, IES Institute of Technology and Management, IES University, Bhopal, Madhya Pradesh, India 462044.
²Department of Mechanical Engineering, Aditya Silver Oak Institute of Technology, Ahmedabad-382481, India.
³Hilla University College, Babylon, Iraq.
⁴Department of CSE, GRIET, Bachupally, Hyderabad, Telangana, India.
⁵Department of Information Science Engineering, New Horizon College of Engineering, Bangalore, India.
⁶Lovely Professional University, Phagwara, India.
⁷Department of Mechanical Engineering, MLR Institute of Technology, Hyderabad, Telangana, India-500043

Abstract. The chase for sustainability has driven awesome strides in composite fibers and recycled plastics, which have made viable options available in numerous areas. Composite fibers are known for their record-breaking strength-to-weight proportions and capacity to serve numerous functions, that's why they're used all over from the automotive industry to aviation. But natural fibers are hydrophilic, so they do not mix well with hydrophobic matrices they need surface adjustments and fire retardant treatments to be utilized for composites to perform at their best. On the other hand, one of plastics' most significant benefits is their recyclability, recycling programs can do a lot to tackle widespread plastic contamination. Recycling has positive environmental effects, but still there are major challenges when it comes to plastic recycling including contamination and all the different types of plastics that require sorting out. Promising answers can be offered to these issues through better approaches to sorting and recycling plastic waste. For instance, life cycle assessments and carbon footprint research are vital for deciding how much composite fibers influence the environment in comparison with conventional materials made from recycled plastics. In this study, we can see that all through their lifecycle composite fibers have been found to discharge minimal amounts of GHGs subsequently reducing energy use to reduce pollution. Similarly, the work on recycled plastics when compared with virgin ones lowers their impacts on the environment by saving landfills from plastic waste, reducing the demand for raw materials, and high in energy production techniques. In general terms, sustainable indicators are exceptionally imperative in ensuring that we make choices based on reliable information regarding

* Corresponding Author : kevalbhavsar.me@silveroakuni.ac.in

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
environmentally sustainable practices and industrial applications that require solid and sustainable future transformation.

1 Introduction

New materials are being developed at a rapid pace in material science, which has led to the replacement of conventional metals and alloys in engineering applications. Because of its high strength-to-weight ratio, composite materials—which are made of polymer, metal, and ceramics—are employed in a variety of sectors. Composites from polymers are particularly valuable in aircraft and automobile industries, since they offer excellent mechanical features like high strength-to-weight ratio, durability against corrosion, and endurance to fatigue. Carbon and glass fibers are the main materials used to make these composites. Since plastic items make up 4-8% of global manufacturing, recycling and reusing plastic waste has decreased the usage of crude oil. Conventional methods of disposal, such as land filling and stacking, discharge hazardous materials into the environment. Plastics made of polyvinyl chloride and polycarbonate contain hazardous substances that can leak into the land, water, and air. Plastic microparticles produced by weathering degradation can be swallowed by animals and absorbed by microorganisms, which can lead to biological amplification and cumulative effects.

The need for eco-friendly alternatives is growing across many industries and sectors. One alternative is composite fibres. Composites have been found utilized in various industries most notably in automotive and aerospace where high resistance and lightweight are crucial considerations. The most widely used fibers that meet these specifications are glass and carbon fibers. However, now industries need more from composites for example they should be low in cost, ecologically friendly, and renewable. This has led to an expanded interest in natural fiber composites as opposed to manufactured or synthetic fiber ones since they have a few points of interest such as lower natural effect on their environment and cheaper fabricating costs, and this broadening their potential applications over distinctive industrial sectors [1]. The drawback of using natural fibers as reinforcement in composites is their hydrophilic character, which makes them incompatible with hydrophobic matrices. It is crucial to treat the natural fiber's surface for overcoming this irregularity and improving the basic features of the composite. Moreover, natural fibers are vulnerable to fire; hence distinctive fire retardants substance have been introduced to enhance fire resistance. The physical and mechanical characteristics of composite fibers can be improved through surface adjustments by utilizing other chemical compounds. Besides, adjusting the structure of composite materials results in more stability [2]. On the other hand, plastics can be recycled numerous times without losing their value or functionality, this way of expanding plastic recycling rates can help to avoid negative environmental impacts. Expanding the recycling of plastic appears like a great idea initially, but it is significant to consider possible natural and social consequences in order to set up the appropriate scientific establishment for it. The majority of Life Cycle Assessments (LCA) consider comparing plastic recycling with other waste management strategies and have concluded positive results, with significant reductions in natural burdens [3]. Nevertheless, substitution potential may be a sensitive point affecting any impact assessment outcome; in this way remains one of those regularly debated issues around circular economy [5]. It makes sense only ecologically if plastics are replaced with virgin ones during fabrication otherwise outcomes are combined or negative [4]. These
results suggest that a system for recycling plastics needs to be designed with a high level of output quality and high reuse potential with an economic assessment of the potential plastic recycling system.

2 Composite Fibers Applications and Environmental Implications

Composite fibers are a sort of material that has changed numerous industries because they are so diverse from other materials and can do numerous things as shown in Table 1. Unlike traditional materials such as metals and polymers, composite fibers are made up of more than one ingredient so they have superior overall properties [5]. In terms of quality-to-weight proportion, no other material can beat it like this one does. This quality offers the areas where light weightiness is required to improve execution and fuel proficiency [6]. For example; carbon fiber which is known for being exceptionally solid and stiff making it idealize for usage in the aerospace industry where cutting down on weight is exceptionally important. Withstanding large amounts of weight without losing shape or size because of their tall modulus means that carbon fibers also offer extra assurance in places where safety is the most essential thing [7].

Composite fibers are so adaptable that they can conduct heat and electric power, and also resist chemical erosion. These multifaceted features of composite fibers have made them appropriate for numerous different usages; from being parts of planes or cars to consumer hardware or renewable energy frameworks [8]. The automobile industry has seen a big alteration in the usage of materials for making cars lighter and more fuel-productive by utilizing composites such as carbon fiber reinforced polymers (CFRP). In automotive manufacturing, companies are taking a shift and utilizing CFRP instead of metals which saves weight without compromising quality [9]. Carbon fiber has been included in electric cars made by Tesla and BMW so that they perform way better over longer distances on one charge while still being eco-friendly [10].

Table 1: Some significant characteristics of commonly used fiber materials [14]

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Density (g/cm³)</th>
<th>Elongation (%)</th>
<th>Tensile Strength (kPa)</th>
<th>Young’s Modulus (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aramid</td>
<td>1.4</td>
<td>3.35</td>
<td>3000000–3150000</td>
<td>63000–67000</td>
</tr>
<tr>
<td>E-glass</td>
<td>2.5</td>
<td>2.75</td>
<td>2000000–3500000</td>
<td>70000</td>
</tr>
<tr>
<td>S-glass</td>
<td>2.5</td>
<td>2.80</td>
<td>4570000</td>
<td>86000</td>
</tr>
<tr>
<td>Cotton</td>
<td>1.5–1.6</td>
<td>6.50</td>
<td>287000–597000</td>
<td>5500–126000</td>
</tr>
<tr>
<td>Hemp</td>
<td>1.48</td>
<td>1.60</td>
<td>550000–900000</td>
<td>70000</td>
</tr>
<tr>
<td>Jute</td>
<td>1.3–1.46</td>
<td>1.65</td>
<td>393000–800000</td>
<td>10000–300000</td>
</tr>
<tr>
<td>Flax</td>
<td>1.4–1.5</td>
<td>2.20</td>
<td>345000–1500000</td>
<td>27600–80000</td>
</tr>
<tr>
<td>Ramie</td>
<td>1.5</td>
<td>2.90</td>
<td>220000–938000</td>
<td>44000–128000</td>
</tr>
<tr>
<td>Kenaf</td>
<td>0.6–1.5</td>
<td>3.00</td>
<td>223000–1191000</td>
<td>11000–60000</td>
</tr>
<tr>
<td>Bamboo</td>
<td>1.2–1.5</td>
<td>2.55</td>
<td>500000–575000</td>
<td>27000–400000</td>
</tr>
<tr>
<td>Oil Palm</td>
<td>0.7–1.6</td>
<td>6.00</td>
<td>50000–400000</td>
<td>600–90000</td>
</tr>
<tr>
<td>Betel Nut</td>
<td>0.2–0.4</td>
<td>23.00</td>
<td>120000–166000</td>
<td>1300–2600</td>
</tr>
</tbody>
</table>

The construction industry is one sector in which, there are numerous benefits of using composite fibers over conventional materials; this includes durability, erosion resistance, and adaptability of design. Fiber-strengthened composites are progressively being utilized in infrastructure projects such as bridges, buildings, or pipelines to upgrade their basic performance and longevity [11]. Construction is simplified by the fact that they are light in
weight while at the same time having superior mechanical qualities which ensures extended resilience against environmental risks such as corrosion and seismic activity. From an eco-friendly viewpoint, resource utilization, energy utilization, as well as greenhouse gas emissions, can be decreased through the selection of composite fibers [12]. For example, carbon-fiber based lightweight materials utilized for making vehicles and airplanes empower manufacturers to create more fuel-productive machines in this way manufacturers cut down carbon footprints related to transportation as shown in Fig.1. The life span and strength of the composite materials reduce the requirement for servicing and restoration, which mitigates expenses and has a positive natural effect [13].

Fig. 1: Applications of composite fibers

3 Recycled Plastics Innovative Solutions and Environmental Benefits

As one of the most prominent natural challenges of our period, plastic pollution has wide-ranging implications for the environment, human well-being, and the worldwide economy. Landfills, oceans, and natural living spaces are filling up with waste because there aren't sufficient systems to arrange it properly [15]. To handle this crisis there will be a comprehensive approach that must include reducing plastic utilization, progressing waste management strategies, and empowering wider utilization of recycling schemes. In terms of averting plastic contamination, recycling is crucial because it prevents waste from going into landfills and reduces virgin plastic requests [16]. However, numerous things decide how well a recycling program works such as whether or not there's a sufficient infrastructure, individuals take part, or whether there is a market for recycled materials as shown in Fig. 2.

Recycling is still a tough fight for environmentalists, and there are numerous reasons. Contamination is a problem in the recycling of plastics, it is a situation where non-recyclable materials blend with recyclable ones subsequently compromising the quality, and strength of recycled materials [17]. Such contamination can happen at any stage from collection to sorting through the handling process; normal contamination's include food scraps, non-recyclable plastics as well as papers or glasses among others. Therefore contamination not only decreases the value of plastic materials but also makes processing costly and can lead to items that are of lower quality [18]. Another trouble lies in sorting out many types of plastic according to their compositions so that they can be prepared separately based on their densities or melting points [19]. Manual sorting is time-consuming; mechanical separation regularly leads to mistakes during traditional strategies utilized in recycling plastics because these polymers have changing properties such as composition, thickness, and melting point. Because of this most such operations find it difficult to achieve high levels of purity or yield in their recycling processes [20].
Promising answers to the issue of plastic recycling can be found in new technologies. For example, optical sorting systems and near-infrared spectroscopy are among new sorting strategies that empower automated recognition and sorting of different types of plastics according to their chemical composition as well as properties, as provided in Table 2 [21]. It implies that these tools improve accuracy, precision control, and effectiveness of sorting which leads to superior quality recycled materials and higher benefits for recyclers. Apart from sorting procedures, improvements in processes utilized in plastics reprocessing also contribute towards making it more practical and versatile [22]. Chemical recycling strategies such as pyrolysis or depolymerization allow the transformation of waste plastic into feedstock to produce new plastics, fuels, or chemicals [23]. By changing unsorted or contaminated plastic into a profitable asset through this kind of innovative approach, mixed-feedstock utilization is achieved, and this decreases reliance on fossil fuels while minimizing plastic-related environmental pollution caused by plastics.

Table 2: Different types of plastics with their densities and melting points [24]

<table>
<thead>
<tr>
<th>Plastic Type</th>
<th>Density (g/cm³)</th>
<th>Melting Point (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene terephthalate (PET)</td>
<td>1.350–1.390</td>
<td>528.15</td>
</tr>
<tr>
<td>High-density polyethylene (HDPE)</td>
<td>0.930–0.970</td>
<td>398.15</td>
</tr>
<tr>
<td>Polyvinyl chloride (PVC)</td>
<td>1.100–1.450</td>
<td>483.15</td>
</tr>
<tr>
<td>Polylactic acid (PLA)</td>
<td>1.200–1.450</td>
<td>428.15–438.15</td>
</tr>
<tr>
<td>Poly-3-hydroxybutyrate (PHB)</td>
<td>1.300</td>
<td>453.15</td>
</tr>
<tr>
<td>Polyethylene furanoate (PEF)</td>
<td>1.400–1.550</td>
<td>498.15</td>
</tr>
</tbody>
</table>

4 Sustainability Metrics and Assessment of Composite Fibers and Recycled Plastics

In assessing the environmental, social, and financial impacts of conventional materials in comparison to sustainable alternatives like reused fibers and composite plastics, among other things, sustainability metrics as well as assessment tools perform a very important function.
With such measures in place, decision-makers can choose rightly so that they support sustainable development while minimizing negative effects on the environment and society around us. The life cycle assessment (LCA) is one such extensively used instrument for evaluating sustainability that assesses the environmental impact of a process or product at every stage from raw material extraction to disposal [26]. LCAs differ from other approaches as shown in Fig. 3, it consider the utilization of energy, GHG emissions, or resource depletion among others associated with diverse materials, and offer a comprehensive understanding of the environmental costs associated with them [27].

![Fig. 3: Process for the Life Cycle assessment of Plastic](image)

The carbon footprint is additionally a key biological measurement. This measurement refers to the overall amount of greenhouse gases (e.g., carbon dioxide, methane) produced by an activity, product, or organization. Carbon footprint assessments establish the sources of emissions and prospects for reduction which directs actions towards minimizing impacts on climate change and improving sustainability [28]. LCAs reveal that in terms of various indicators of natural burden usually, eco-friendly options have shown lower burdens than conventional ones when comparing composite fibers with recycled plastics against standard materials [29]. For example, it has been found through research that carbon fiber-reinforced polymers (CFRP), which are composite fibers produce low GHGs during the production process as well consume less energy in contrast to conventional materials like steel or aluminum [30]. Moreover, recycling plastics generally causes less natural harm than virgin plastics because they diminish demand for raw materials extraction and energy-intensive fabricating processes [31].

Moreover, LCAs show lots of energy saving and asset preservation that come with the utilization of composite fibers and recycled plastics. Talking about the example, composites have better strength-to-weight proportions than conventional materials such as steel or concrete which permits lightweight designs that cut down on fuel consumption in transportation and outflows of GHGs [32]. Moreover, composite fibers are long-lasting which suggests that they do not require frequent replacements, and preserving them for a
longer time. There is a huge amount of energy saved and fewer resources utilized when recycling plastics compared to making new ones [33]. Recycling plastic waste drops power utilization as well as CO2 emissions from extracting raw materials for refineries. In expansion to this by not putting plastic wastes into landfills or burning them up we can save our environment from contamination and save more natural assets as well [34]. Overall we can say that sustainability indicators along with assessment strategies offer valuable data about how eco-friendly alternatives like composite fibers & reprocessed plastics perform and this can help to achieve a pollution-less environment.

5 Conclusion

In conclusion, the study of this paper considers composite fibers and recycled plastics which highlights how critical it is for modern industrial processes to find sustainable arrangements. The key points regarding to this are specified underneath:

- Numerous different industries may utilize composite fibers and recycled plastics because of their strength-to-weight proportions and the recyclability that they can be reused. This adoption of alteration can reduce the environmental burden of extraction and pollution. For example, composite fibers and recycled plastics both the materials give practical ways to deal with natural issues like scarcity caused by the consumption of resources or contamination caused by plastics.
- Hydrophilic natural fibers and plastic recycling pollution are among the challenges that must be overcome if we need to utilize these things to their full potential. This will require continuous progression in the ongoing development and systemic changes to the waste management infrastructure.
- When we carry on with composite fiber or recycled plastic there are several natural benefits that not only diminish GHG emissions but also drop energy utilization while moderating more resources than any other conventional material does. Their wide range of applications makes a difference in mitigating industrial natural impact while advancing resource effectiveness.
- One such step that will be taken toward accomplishing sustainability is adopting green alternatives such as composite fibers and recycled plastics, which may also result in financial gains from their resource preservation and decreased waste disposal costs. By adopting green alternates it also promote environmental consideration for stakeholders through sustainability measurements, fostering collaboration, and among different partners to support research on sustainable advancement.

References

