Innovative and Sustainable Transformation of Industrial Sector as a Green Manufacturing Approach

_Pulkit kumar_1*, Dinesh Yadav_2, Ahmed Salaam_3, P. Srividya Devi_4, Asha V_5, Ginni Nijhawan_6, S Nagaraju_7

1Development department, Air control and chemical engineering company limited, Ahmedabad, India.
2Department of Civil Engineering, IES Institute of Technology and Management, IES University, Bhopal, Madhya Pradesh, India.
3Hilla University College, Babylon, Iraq.
4Department of EEE, GRIET, Bachupally, Hyderabad, Telangana, India.
5Department of Computer Applications, New Horizon College of Engineering, Bangalore, India.
6Lovely Professional University, Phagwara, India.
7Department of Mechanical Engineering, MLR Institute of Technology, Hyderabad, Telangana, India-500047

Abstract. The development of green manufacturing (GM) is a key approach to handle industrial challenges to the environment while advancing sustainable economic improvement. This paper profoundly discusses about GM’s standards, challenges, opportunities and changes that contribute to its significance and course of activity and reduces the burden on environment. It is an all-encompassing show of manufacturing that requires environmental responsibility from each phases of the product life cycle to make that Eco-friendly. This includes the utilization of eco-friendly materials, implementation of a green plan, proficient waste administration, regulatory compliance as well as stakeholder engagement. In order to reduce environmental damage, preserve resources, and improve operational productivity within the production line through sustainability integration into production forms GM is executed. GM has different decision-making and operational techniques at core that are guided by several key standards and devices. These include waste reductions, energy-efficient items, and green plans. To reduce waste production, optimize energy utilization and accept the idea of sustainable design in arrange to empower natural moderation whereas progressing takes a toll possibility and asset utilization is what the producers can achieve. Effective GM arrangements have required collective exertion, authority, and regular growth. Even though challenges like adherence to adoption or a combination of innovations need to be covered, GM also speaks to major possible opportunities for development, secure funds, and market differentiation. Manufacturers who agreed to eco-friendly measures and misuse rising advances are projected to boost their worldwide recognition by upgrading competitiveness over industries as they contribute towards an economical and sustainable future. The future of GM

* Corresponding Author: dvlp2@accelindia.com

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
is unusual due to the existence of unused patterns that are rising. Modern trends like artificial intelligence-based techniques, bio-based materials also blockchain innovation offer a lot of potential in terms of making assembly lines more economical and effective at the same time. It is expected that worldwide there will be an increasing focus on natural supportability with GM proceeding to be instrumental in forming the extension of the industry as well as advancing a more sustainable society that pampers all.

1 Introduction

The development of industry has resulted in the overuse of resources without taking environmental deterioration into account. Because of climate change, businesses are more aware of the need to lower their carbon footprint, which encourages the production of ecologically friendly goods. Increasing energy expenses have spurred efforts to reduce energy usage and greenhouse gas emissions. Policies and regulations have been put in place in developed regions to introduce green manufacturing systems. Green manufacturing, formerly known as "environmentally conscious manufacturing," is the process of producing goods using commercially viable methods that reduce their adverse effects on the environment while preserving energy and natural resources. The "triple-bottom-line" dimensions—the financial, environmental, and social dimensions—form the foundation of this term. Green manufacturing (GM) is characterized in the most generic way as “manufacturing practices that don't hurt the environment amid any of its phases". It includes a green design of products, utilization of natural raw materials, eco-friendly packing, distribution, and reuse of the product. It moderates the exhaustion of natural resources and brings down the waste. Its focus is on reducing parts, rationalizing materials, and reusing components. It covers a number of manufacturing issues, counting 6R’s i.e. reduce, reuse, recycle, recover, redesign and re-manufacturing preservation, waste control management, natural conservation, managing compliance, pollution control, and other associated needs [1].

Green advancement becomes the subject of corporate sustainable development and nations in the world formulate environmental directions to drive corporate green development. By reducing pollutants, cleaner manufacturing seeks to protect the environment and provide financial gains. Lean manufacturing and other "6R" techniques, along with Green Manufacturing techniques (GMP) have been embraced by numerous companies or have indicated a desire to do so. According to research, firms adopt GMP as a result of societal and regulatory requirements. Environmentally friendly business strategies boost output, cut expenses, save the environment, and enhance long-term financial results. GMP enhances company sustainable performance and establishes a competitive advantage from a resource-based perspective. To manage worldwide climate change and financial recession, companies using green innovation to promote economic growth and pointing at high value-added development result in a worldwide financial improvement to a great extent stepping into a “green economy”. Green technological development and speeding industrialization encourage the application of green manufacturing and green supply chains accomplishing certain results [2]. GM stresses lowering the parts, rationalizing materials, and reducing components to make products more proficient to construct. Green manufacturing highlights the plan of the industries for accomplishing operational advancements through sustainable development and its effect on organizational competitive results. Companies practicing green manufacturing know the significance of executing factors but have failed to achieve them in
totality [3]. The main objective of the study is to bring the focus of the manufacturer who is manufacturing the product with mass production in their assembly lines. It has been observed that a lot of energy is utilized day by day and plenty of waste is also produced, this waste is unsafe and can lead human beings to further losses [4]. This paper focuses on the waste and the technique of green manufacturing that will be utilized and can lower the wastage and increment the utilization of sustainable energy. The usage of Green Manufacturing may not as it were be great for the environment — it is frequently great trade, as well. The same is often true of other efforts to reduce the energy- and material-intensiveness of manufacturing operations; what is good for the environment is typically great for the balance sheet as well [5]. So, green manufacturing is the best practice at present to preserve the future.

2 Principles and Tools for Green Manufacturing

The base of green manufacturing lies on principles leading to decision-making and operational methodologies. These standards cover a wide range of areas including sustainable management as well as resource productivity and social responsibility. Waste reduction is the other principle, which highlights the reduction, reusing, and recycling of materials over the assembly line cycle. It too empowers manufacturers to reduce waste while optimizing resource utilization so that they may decline natural impacts and at the same time advance on affordability [6]. Energy effectiveness is another basic principle that includes optimization of energy utilization in terms of greenhouse gas emissions from manufacturing practices. In expansion, it calls for the utilization of energy-efficient innovations such as renewable power sources and regulation of energy systems will not just diminish natural impressions but also upgrade operational execution [7]. Furthermore, sustainable manufacturing fundamentals emphasize the importance of product designs by utilizing eco-friendly raw materials, streamlined packaging operations, and end-of-life programs that are nontoxic for the environment. Such perspectives that have life span characteristics, recyclability qualities, or disassemblability traits in their items can go a long way in minimizing their consequences on the environment as well as encourage the move towards a circular economy [8].

For ecological purposes, organizing production, supply chain management, waste control, and product design is one way of doing it. One of the ways is to consider Eco-design, which implies optimizing the ideas of products in a way that lowers negative natural impacts from conception to disposal. Prioritizing material choice, energy productivity, and recyclability in Eco-design makes products more eco-friendly and sustainable which has good impacts [9]. Green manufacturing involves utilizing clean innovations in production assembly to diminish pollution while minimizing resource consumption. For a case, lean manufacturing can be utilized to evacuate wastes and improve output by continuous progress in the process [10]. Manufacturers have to work hand in hand with customers as well as other partners to find opportunities for diminishing environmental degradation along the supply chain for sustainability purposes. By creating integrity and responsibility inside the supply chain organizations can spot regions for improvement and take essential activities that would cut down on rapid resource utilization, emissions, and waste generation [11].

There are numerous companies with different segments that have achieved success in executing green manufacturing measures and have demonstrated that sustainable practices can be realized. Interface Inc. could be a great example of this case because it has embraced an all-inclusive sustainability plan such as the utilization of materials from recycled sources, renewable energy, and waste control among others [12]. It is notable that with its Mission Zero campaign, Interface has been able to cut down on GHG emissions, water utilization, and waste generation and by doing this they demonstrated the potential of green manufacturing in the carpet sector [13]. Tesla Inc., which is one of the leading electric vehicle producers, applied this concept in its whole supply chain and manufacturing systems. Being
established on the utilization of elective sources for producing power or energy preservation amid manufacturing with productive vehicle plans. Tesla Company has raised itself as a popular name in eco-friendly manufacturing practices [14]. The dedication of the company towards sustainability and feasibility has improved the environment and raised the value of the company in the market as brand recognition. Table 1 represents means, standard deviations, and inter-correlations for dependent variable (organizational performance) and its predictors [34].

Table 1: Means, standard deviation, and inter-correlations for organizational performance and predictor variables (N = 218)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizational performance</td>
<td>1.67</td>
<td>0.546</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green manufacturing</td>
<td>2.16</td>
<td>0.718</td>
<td>0.362**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green purchasing</td>
<td>2.90</td>
<td>1.043</td>
<td>0.145*</td>
<td>0.305**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eco-design</td>
<td>1.79</td>
<td>0.652</td>
<td>0.472**</td>
<td>0.434**</td>
<td>0.210**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooperation with customers</td>
<td>1.80</td>
<td>0.891</td>
<td>0.382**</td>
<td>0.286**</td>
<td>0.211**</td>
<td>0.520**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Green information systems</td>
<td>2.22</td>
<td>0.910</td>
<td>0.308**</td>
<td>0.216**</td>
<td>0.147**</td>
<td>0.147**</td>
<td>0.191**</td>
<td>1</td>
</tr>
</tbody>
</table>

*p < 0.05 (2-tailed); **p < 0.01(2-tailed)

3 Challenges and Opportunities of Green Manufacturing

In green manufacturing, numerous challenges and chances need to be overcome in arrange to be successful when going green. The cost of executing green manufacturing techniques may be high, including purchasing new technologies, infrastructural development, and skilling the workers [15]. Moving towards more sustainable modes of production may disturb extant workflow trends and supply chains, subsequently causing resistance from partners who have developed accustomed to conventional manufacturing strategies. Other challenges emerge from issues related to the natural rules regulations and measures as manufacturers attempt desperately to preserve their worldwide competitiveness within complex administrative systems characterized by a quick change of rules [16]. Besides this, measurements utilized while assessing the company's environmental proficiency are troublesome requiring advanced measurement systems as well as information analytics tools. These steps can only be surmounted through proactive authority, stakeholder inclusion as well as a coordinated procedure for sustainability actions [17].

Green manufacturing, despite being intense presents many development opportunities and reduces the cost making it special from the rest. By Innovative methods that are biologically mindful, the manufacturer can lower its operational costs through energy efficiency enhancements, waste reduction as well as resource optimization [18]. In expansion to this, green manufacturing encourages creativity since it prompts the improvement of modern technologies, materials, and procedures that have negligible natural impacts. Sustainable manufacturing activities can also improve brand reputation and market competitiveness with rising attention on ecologically beneficial products by consumers [19]. Besides, green manufacturing offers chances for collaboration and association over every sector which looks
for sharing best methods, accomplishing economies of scale, or tending to common sustainability issues together [20]. Tolerating these challenges may offer assistance to companies to persevere in a world where financial and natural conditions are quickly changing.

There are a few other reasons why green manufacturing is not only a way of protecting the environment but is additionally related to financial, social as well as operational benefits that can be achieved by following green practices. A few of the natural benefits include a reduction in carbon dioxide emissions, conservation of natural resources, and guarding against harmful damage to the environment and biodiversity these benefits are enough against the traditional sources [21]. Fig 1 represents the opportunities produced by adopting Green Manufacturing.

![Fig. 1: Green manufacturing opportunities](image)

From a financial point of view, green manufacturing may result in cutting expenses through upgraded efficiency, diminished waste disposal costs, and improving the quality of products. Some social benefits are, career possibilities improved working conditions, and community cooperation when producers illustrate commitment towards social obligation and partner welfare [22]. Moreover, green manufacturing moves forward strength in operations by diminishing exposure to risks such as shortage of resources; non-compliance with rules and guidelines; bruised reputations [23]. We can say that firms can utilize green manufacturing processes that make it worth beyond economic measures while considering natural and social dimensions that make sustainability important.

4 Technologies and New Innovation in Green Manufacturing

Driving sustainability and productivity in industrial processes is reliant on green manufacturing advances and developments. Green manufacturing, regardless utilizes different innovations to guarantee small contamination, diminished resource utilization, and a good performance altogether [24]. One type is additive manufacturing which is also known as 3D printing, it helps manufacturers to build complex components with negligible wastage.
Another key technology is advanced robotics and automation which upgrades processes in production and lowers the amount of power used [25]. In expansion, solar panels or wind turbines are set up in industrial facilities as well as renewable energy sources to reduce fossil fuel needs and thus restrict GHG emissions [26]. Other than that, real-time checking of production processes through sensor innovation has been made conceivable by the utilization of IoT gadgets; this leads to growth in productivity levels and resource utilization rates [27]. These latest-generation concepts build up the premise for green manufacturing in this way permitting firms to switch to ecologically sustainable production methods.

Table 2: Innovative Approaches with description and its benefit

<table>
<thead>
<tr>
<th>Innovation</th>
<th>Description</th>
<th>Benefit</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive Manufacturing</td>
<td>Enables production of complex components with minimal material waste.</td>
<td>Reduces material waste, increases design flexibility, and decreases production time.</td>
<td>[24], Lieder, Michael, and Amir Rashid</td>
</tr>
<tr>
<td>Advanced Robotics and Automation</td>
<td>Optimizes production processes, enhances precision, and reduces energy consumption.</td>
<td>Improves efficiency, accuracy, and safety while reducing labor costs and energy usage.</td>
<td>[25], Alhijaily, Abdullah et al.</td>
</tr>
<tr>
<td>Renewable Energy Integration</td>
<td>Integration of solar panels and wind turbines into manufacturing facilities to reduce reliance on fossil fuels and lower greenhouse gas emissions.</td>
<td>Reduces carbon footprint, lowers energy costs, and enhances sustainability.</td>
<td>[26], Ellabban, Omar et al.</td>
</tr>
<tr>
<td>Sensor Technology and IoT Devices</td>
<td>Enables real-time monitoring and optimization of manufacturing processes, leading to greater efficiency and resource utilization.</td>
<td>Enhances process control, minimizes downtime, and improves resource management.</td>
<td>[27], Wang, Wenbo, Haidong Yang et al.</td>
</tr>
<tr>
<td>Closed-loop Manufacturing Systems</td>
<td>Recycling or repurposing waste materials to reduce waste generation and promote circularity.</td>
<td>Reduces waste disposal costs, conserves resources, and promotes sustainability.</td>
<td>[28], Kara, Sami, Michael Hauschild et al.</td>
</tr>
<tr>
<td>Bio Manufacturing</td>
<td>Use of biological systems such as bacteria or enzymes to produce materials and chemicals with minimal environmental impact.</td>
<td>Reduces reliance on traditional manufacturing processes, minimizes environmental pollution, and enhances eco-friendly nature.</td>
<td>[29], Kara, Sami, Michael Hauschild et al.</td>
</tr>
</tbody>
</table>
If a wide range of modern and contemporary methods are used in green or sustainable manufacturing, it reduces the environmental impacts and increases the resource efficiency. For illustration, there are closed-loop manufacturing systems where waste materials from one process are recycled or reused for another process in this manner we reduce waste and foster circularity [28]. In addition, there's bio-manufacturing which utilizes organic systems like bacteria or enzymes to attain negligible natural impact materials and chemicals. Other than that, green chemistry strategies that employ solvent-free processes together with catalytic reactions make it possible to synthesize products less harmful and with low waste [29]. Furthermore, joint manufacturing models like shared resources among numerous companies' productions contribute significantly to resource proficiency as well as collaboration in an offered to lessen natural effects [30]. These are some occurrences that illustrate the different and innovative ways that are utilized to achieve sustainability targets in the manufacturing sector as presented in Table 2.

Looking forward to the future, it is expected that the shape of green manufacturing will be affected by a few key patterns and progressions. One of these is the utilization of artificial intelligence and machine learning algorithms to optimize output methods, estimate the need for maintenance as well as distinguish productivity improvement opportunities [31]. This study also believes that implementing block chain innovation into supply chains progresses accountability, traceability, and responsibility, hence this implementation of new edge technology empowers manufacturers to track their product's natural and social impacts over a complete life cycle [32]. Besides, improvements in nanotechnology offer the possibility of making super-efficient materials and coatings with way better properties while minimizing their effect on the environment [33]. These emerging and innovative trends of green manufacturing indicate a change towards more sustainable, efficient, and sturdy methodologies [34].

5 Conclusion

In conclusion, we can easily say that green manufacturing is a major shift in the industrial sector that promotes operational excellence and environmental sustainability by using its practices and principles. GM has the power to minimize the environmental impacts as well as enhances efficiency and fosters innovation.

- GM addresses the responsibility for the environment through activities such as diminishing waste, utilizing sustainable energy arrangements and coming up with items that diminish pollution. By guaranteeing low generation of wastes and demand on resources, GM makes a difference to cut biological impressions hence protecting common resources with biological systems.
- Following the rules and principles organizations can achieved lowering costs, improving productivity, and accomplishing operational advantages by utilizing resources productively. Manufacturers who have implemented sustainability methods have improved their competitiveness and versatility in a dynamic business environment.
- Other than that, GM has been instrumental in the advancement and collaboration of businesses, causing the development of cutting-edge innovations and maintainability resolutions. This can be due to the fact that organizations have selected regions that require enhancement thereby improving their value chain through participation and engaging with partners.
- Green manufacturing processes are very critical and to be made more realistic and skilled by developing new trends such as AI, blockchain, and bio-based materials. So, by adopting these new technologies in their product assembly lines organizations can
GM in a general sense gives a road map for accomplishing environmental sustainability, operational advantage, and financial development. In arrange to move through the complex present-day business world in the midst of making more than economical metrics-driven values that cover all three dimensions of sustainability (economical, environmental, and social).

References

excellent performance as an electrochemical sensor and an UV photocatalyst. Journal of Science: Advanced Materials and Devices, 3(2), 151-160.

