Open Access
Issue
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 01006
Number of page(s) 11
Section Materials Science
DOI https://doi.org/10.1051/e3sconf/202450501006
Published online 25 March 2024
  1. Mufti, T. A., Jan, S. G., Wani, M. F., & Sehgal, R. (2023). Development, mechanical characterization and high temperature tribological evaluation of magnetron sputtered novel MoS2-CaF2-Ag coating for aerospace applications. Tribology International, 182, 108374. [Google Scholar]
  2. Ozerinc, S. (2015). Microscale mechanical characterization of materials for extreme environments. University of Illinois at Urbana-Champaign. [Google Scholar]
  3. Pozzi, M., Hassan, M., Harris, A. J., Burdess, J. S., Jiang, L., Lee, K. K., … & Mehregany, M. (2007). Mechanical properties of a 3C-SiC film between room temperature and 600 C. Journal of Physics D: Applied Physics, 40(11), 3335. [Google Scholar]
  4. Telagam, N., Kandasamy, N., & Nanjundan, M. (2017). Smart sensor network based high quality air pollution monitoring system using labview. International Journal of Online Engineering (iJOE), 13(08), 79–87. [CrossRef] [Google Scholar]
  5. Awasthi, A., Saxena, K. K., Dwivedi, R. K., Buddhi, D., & Mohammed, K. A. (2022). Design and analysis of ECAP Processing for Al6061 Alloy: a microstructure and mechanical property study. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–13. [Google Scholar]
  6. Arun, V., Singh, A. K., Shukla, N. K., & Tripathi, D. K. (2016). Design and performance analysis of SOA- MZI based reversible toffoli and irreversible AND logic gates in a single photonic circuit. Optical and quantum electronics, 48, 1–15. [CrossRef] [Google Scholar]
  7. Upadhyay, K. K., Arun, V., Srivastava, S., Mishra, N. K., & Shukla, N. K. (2019). A novel model of all- optical reversible XOR/XNOR logic gate on a single photonic circuit. Indian Journal of Physics, 93, 1081–1094. [CrossRef] [Google Scholar]
  8. Korpi, A. G., Țălu, Ş., Bramowicz, M., Arman, A., Kulesza, S., Pszczolkowski, B., … & Gopikishan, S. (2019). Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Materials Research Express, 6(8), 086463. [Google Scholar]
  9. Eswarappa Prameela, S., Pollock, T. M., Raabe, D., Meyers, M. A., Aitkaliyeva, A., Chintersingh, K. L., … & Graham-Brady, L. (2023). Materials for extreme environments. Nature Reviews Materials, 8(2), 81–88. [Google Scholar]
  10. Shukla, A., Gupta, N., Ramya, N. S., Saxena, K. K., Iqbal, A., & Djavanroodi, F. (2023). Environmental sustainability in construction: Influence of Megaterium Bacteria on the durability and mechanical properties of concrete incorporating calcined clay. Mechanics of Advanced Materials and Structures, 1–13. [Google Scholar]
  11. Cadoni, E. (2018, March). Mechanical characterization of alloys in extreme conditions of high strain rates and high temperature. In IOP Conference Series: Materials Science and Engineering (Vol. 329, No. 1, p. 012006). IOP Publishing. [Google Scholar]
  12. Yusenko, K. V., Riva, S., Crichton, W. A., Spektor, K., Bykova, E., Pakhomova, A., … & Brown, S. G. (2018). High-pressure high-temperature tailoring of high entropy alloys for extreme environments. Journal of Alloys and Compounds, 738, 491–500. [Google Scholar]
  13. Arun, V., Shukla, N. K., Singh, A. K., & Upadhyay, K. K. (2015, September). Design of all optical line selector based on SOA for data communication. In Proceedings of the Sixth International Conference on Computer and Communication Technology 2015 (pp. 281–285). [Google Scholar]
  14. Singh, B., Saxena, K. K., Dagwa, I. M., Singhal, P., & Malik, V. (2023). Optimization Of Machining Characteristics of Titanium-Based Biomaterials: Approach to Optimize Surface Integrity for Implants Applications. Surface Review and Letters, 2340008. [Google Scholar]
  15. Xu, H., Ji, W., Guo, W., Li, Y., Zou, J., Wang, W., & Fu, Z. (2022). Enhanced Mechanical Properties and Oxidation Resistance of Zirconium Diboride Ceramics via Grain-Refining and Dislocation Regulation. Advanced Science, 9(6), 2104532. [CrossRef] [Google Scholar]
  16. Ajith, J. B., Manimegalai, R., & Ilayaraja, V. (2020, February). An IoT based smart water quality monitoring system using cloud. In 2020 International conference on emerging trends in information technology and engineering (ic-ETITE) (pp. 1–7). IEEE. [Google Scholar]
  17. Rubio, V., Binner, J., Cousinet, S., Le Page, G., Ackerman, T., Hussain, A., … & Dautremont, I. (2019). Materials characterisation and mechanical properties of Cf-UHTC powder composites. Journal of the European Ceramic Society, 39(4), 813–824. [CrossRef] [Google Scholar]
  18. Saxena, K. K., & Lal, A. (2012). Comparative Molecular Dynamics simulation study of mechanical properties of carbon nanotubes with number of stone-wales and vacancy defects. Procedia Engineering, 38, 2347–2355. [CrossRef] [Google Scholar]
  19. Ayed, Y., Germain, G., Ammar, A., & Furet, B. (2017). Thermo-mechanical characterization of the Ti17 titanium alloy under extreme loading conditions. The International Journal of Advanced Manufacturing Technology, 90, 1593–1603. [Google Scholar]
  20. Gupta, T. K., Budarapu, P. R., Chappidi, S. R., Yb, S. S., Paggi, M., & Bordas, S.P. (2019). Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 26(38), 6851–6877. [CrossRef] [PubMed] [Google Scholar]
  21. Tripathi, G. P., Agarwal, S., Awasthi, A., & Arun, V. (2022, August). Artificial Hip Prostheses Design and Its Evaluation by Using Ansys Under Static Loading Condition. In Biennial International Conference on Future Learning Aspects of Mechanical Engineering (pp. 815–828). Singapore: Springer Nature Singapore. [Google Scholar]
  22. Zoli, L., Vinci, A., Galizia, P., Melandri, C., & Sciti, D. (2018). On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments. Scientific Reports, 8(1), 9148. [Google Scholar]
  23. Sha, J. (2009). ‘High Temperature Mechanical Properties and Microstructure of SiC-based Fibers under Severe Environments. Strength of Materials, (Eds., G. Mendes, B. Lago), Nova Science Publishers, New York, 1. [Google Scholar]
  24. Balguri, P. K., Samuel, D. H., & Thumu, U. (2021). A review on mechanical properties of epoxy nanocomposites. Materials Today: Proceedings, 44, 346–355. [Google Scholar]
  25. Neuman, E. W., Hilmas, G. E., & Fahrenholtz, W. G. (2016). Ultra-high temperature mechanical properties of a zirconium diboride-zirconium carbide ceramic. Journal of the American Ceramic Society, 99(2), 597–603. [CrossRef] [Google Scholar]
  26. SudhirSastry, Y. B., Krishna, Y., & Budarapu, P. R. (2015). Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 96, 416–424. [Google Scholar]
  27. Awasthi, A., Saxena, K. K., & Arun, V. (2021). Sustainable and smart metal forming manufacturing process. Materials Today: Proceedings, 44, 2069–2079. [CrossRef] [Google Scholar]
  28. Cui, K., Mao, H., Zhang, Y., Wang, J., Wang, H., Tan, T., & Fu, T. (2022). Microstructure, mechanical properties, and reinforcement mechanism of carbide toughened ZrC-based ultra-high temperature ceramics: A review. Composite Interfaces, 29(7), 729–748. [Google Scholar]
  29. Alam, M. S., Basit, M., Suhling, J. C., & Lall, P. (2016, May). Mechanical characterization of SAC305 lead free solder at high temperatures. In 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 755–760). IEEE. [CrossRef] [Google Scholar]
  30. Swapna Sri, M. N., Anusha, P., Madhav, V. V., Saxena, K. K., Chaitanya, C. S., Haranath, R., & Singh, B. (2023). Influence of Cu particulates on a356mmc using frequency response function and damping ratio. Advances in Materials and Processing Technologies, 1–9. [CrossRef] [Google Scholar]
  31. Fang, D., Li, W., Cheng, T., Qu, Z., Chen, Y., Wang, R., & Ai, S. (2021). Review on mechanics of ultra- high-temperature materials. Acta Mechanica Sinica, 37(9), 1347–1370. [CrossRef] [Google Scholar]
  32. Reddy, K. S. P., Roopa, Y. M., Ln, K. R., & Nandan, N.S. (2020, July). IoT based smart agriculture using machine learning. In 2020 Second international conference on inventive research in computing applications (ICIRCA) (pp. 130–134). IEEE. [Google Scholar]
  33. Awasthi, A., Saxena, K. K., & Arun, V. (2020). Sustainability and survivability in manufacturing sector. In Modern Manufacturing Processes (pp. 205–219). Woodhead Publishing. [Google Scholar]
  34. Qin, Z., Wu, Y. T., Eizad, A., Lyu, S. K., & Lee, C. M. (2021). Advancement of mechanical engineering in extreme environments. International Journal of Precision Engineering and Manufacturing-Green Technology, 1–16. [Google Scholar]
  35. Chen, X., Dmuchowski, C. M., Park, C., Fay, C. C., & Ke, C. (2017). Quantitative characterization of structural and mechanical properties of boron nitride nanotubes in high temperature environments. Scientific reports, 7(1), 11388. [Google Scholar]
  36. Arora, G. S., & Saxena, K. K. (2023). A review study on the influence of hybridization on mechanical behaviour of hybrid Mg matrix composites through powder metallurgy. Materials Today: Proceedings. [Google Scholar]
  37. Kumari, C. U., Murthy, A. S. D., Prasanna, B. L., Reddy, M. P. P., & Panigrahy, A. K. (2021). An automated detection of heart arrhythmias using machine learning technique: SVM. Materials Today: Proceedings, 45, 1393–1398. [CrossRef] [Google Scholar]
  38. Chowdhury, M. R., Ahmed, S., Fahim, A., Suhling, J. C., & Lall, P. (2016, May). Mechanical characterization of doped SAC solder materials at high temperature. In 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) (pp. 1202–1208). IEEE. [CrossRef] [Google Scholar]
  39. Ramadugu, S., Ledella, S. R. K., Gaduturi, J. N. J., Pinninti, R. R., Sriram, V., & Saxena, K. K. (2023). Environmental life cycle assessment of an automobile component fabricated by additive and conventional manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–12. [Google Scholar]
  40. Godavarthi, B., Nalajala, P., & Ganapuram, V. (2017, August). Design and implementation of vehicle navigation system in urban environments using internet of things (IoT). In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012262). IOP Publishing. [CrossRef] [Google Scholar]
  41. Beake, B. D., & Harris, A. J. (2019). Nanomechanics to 1000 C for high temperature mechanical properties of bulk materials and hard coatings. Vacuum, 159, 17–28. [Google Scholar]
  42. Zoli, L., Vinci, A., Galizia, P., Melandri, C., & Sciti, D. (2018). On the thermal shock resistance and mechanical properties of novel unidirectional UHTCMCs for extreme environments. Scientific Reports, 8(1), 9148. [Google Scholar]
  43. Fahrenholtz, W. G., Wuchina, E. J., Lee, W. E., & Zhou, Y. (Eds.). (2014). Ultra-high temperature ceramics: materials for extreme environment applications. John Wiley & Sons. [Google Scholar]
  44. Dwivedi, A., Shukla, S. K., Bharti, P. K., Gupta, N., Saxena, K. K., & Dwivedi, Y. D. (2023). Comparative study of polyanthranilic acid and sulphonated polyaniline on the mild steel corrosion in aqueous hydrochloric acid. Canadian Metallurgical Quarterly, 1–9. [CrossRef] [Google Scholar]
  45. Schreiber, D. K., Schwaiger, R., Heilmaier, M., & McCormack, S. J. (2022). Materials properties characterization in the most extreme environments. MRS Bulletin, 47(11), 1128–1142. [Google Scholar]
  46. Basavapoornima, C., Kesavulu, C. R., Maheswari, T., Pecharapa, W., Depuru, S. R., & Jayasankar, C. K. (2020). Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. Journal of Luminescence, 228, 117585. [CrossRef] [Google Scholar]
  47. Agrawal, R., Singh, S., Saxena, K. K., & Buddhi, D. (2023). A role of biomaterials in tissue engineering and drug encapsulation. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089221150740. [Google Scholar]
  48. Fahrenholtz, W. G., & Hilmas, G. E. (2017). Ultra-high temperature ceramics: Materials for extreme environments. Scripta materialia, 129, 94–99. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.