Open Access
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 01013
Number of page(s) 17
Section Materials Science
Published online 25 March 2024
  1. J. Knörlein, M.M. Franke, M. Schloffer, T. Berger, and C. Körner, “Microstructure and mechanical properties of additively manufactured γ-tiAl with dual microstructure,” Intermetallics, vol. 161, p. 107978, 2023, DOI: 10.1016/j.intermeT.2023.107978. [Google Scholar]
  2. V. Boggarapu, P.S. Rama Sreekanth, and V.B. Peddakondigalla, “Microstructure, mechanical and tribological properties of Al/Cu functionally graded material fabricated through powder metallurgy,” Journal of Engineering Research, vol. 262, p. 100119, 2023, DOI: 10.1016/j.jer.2023.100119. [Google Scholar]
  3. Z.L. Chao et al., “Microstructure and mechanical properties of B4C/2024Al functionally gradient composites,” Materials & Design, vol. 215, no. 6, p. 110449, 2022, DOI: 10.1016/j.matdes.2022.110449. [CrossRef] [Google Scholar]
  4. J. Han et al., “Microstructure and mechanical properties of a novel functionally graded material from ti6Al4V to Inconel 625 fabricated by dual wire + arc additive manufacturing,” Journal of Alloys and Compounds, vol. 903, p. 163981, 2022, DOI: 10.1016/j.jallcom.2022.163981. [Google Scholar]
  5. G. Bretti, S. McGinty, and G. Pontrelli, “Modelling smart drug release with functionally graded materials,” Computers in biology and medicine, vol. 164, p. 107294, 2023, DOI: 10.1016/j.compbiomed.2023.107294. [Google Scholar]
  6. D. Chen, K. Gao, J. Yang, and L. Zhang, “Functionally graded porous structures: Analyses, performances, and applications - A Review,” Thin-Walled Structures, vol. 191, no. 12, p. 111046, 2023, DOI: 10.1016/j.tws.2023.111046. [Google Scholar]
  7. S. Das, S. Das, T. Nampi, and K. Roy, “Functionally Grade Composite Material Production,” in Encyclopedia of Materials: Composites: Elsevier, 2021, pp. 798–803. [Google Scholar]
  8. X. Tian, Z. Zhao, H. Wang, X. Liu, and X. Song, “Progresses on the additive manufacturing of functionally graded metallic materials,” Journal of Alloys and Compounds, vol. 960, p. 170687, 2023, DOI: 10.1016/j.jallcom.2023.170687. [Google Scholar]
  9. A. Pasha and B.M. Rajaprakash, “Fabrication and mechanical properties of functionally graded materials: A review,” Materials today: Proceedings, vol. 52, pp. 379–387, 2022, DOI: 10.1016/j.matpr.2021.09.066. [Google Scholar]
  10. A. Owoputi, F. Inambao, and W. Ebhota, “A Review of Functionally Graded Materials: Fabrication Processes and Applications,” International Journal of Applied Engineering Research, vol. 13, no. 23, pp. 16141–16151, 2021. [Online]. Available: [Google Scholar]
  11. A.K. Naik, M. Nazeer, D.K.V.D. Prasad, T. Laha, and S. Roy, “Development of functionally graded ZrB2-B4C composites for lightweight ultrahigh-temperature aerospace applications,” Ceramics International, vol. 48, no. 22, pp. 33332–33339, 2022, DOI: 10.1016/j.ceraminT.2022.07.276. [CrossRef] [Google Scholar]
  12. H. Kumar, K. Devade, D. Pratap Singh, J. Mohan Giri, M. Kumar, and V. Arun, “Severe plastic deformation: A state of art,” Materials today: Proceedings, vol. 169, no. 2, p. 223, 2023, DOI: 10.1016/j.matpr.2023.02.194. [Google Scholar]
  13. E.M. Zayed, M. Shazly, A. El-Sabbagh, and N.A. El-Mahallawy, “Deformation behavior and properties of severe plastic deformation techniques for bulk materials: A review,” Heliyon, vol. 9, no. 6, e16700, 2023, DOI: 10.1016/j.heliyon.2023.e16700. [Google Scholar]
  14. H. Zhang, Z. He, and W. Gao, “Effect of surface severe plastic deformation on microstructure and hardness of Al alloy sheet with enhanced precipitation,” Materials Letters, vol. 333, p. 133632, 2023, DOI: 10.1016/j.matleT.2022.133632. [CrossRef] [Google Scholar]
  15. Y. Estrin and A. Vinogradov, “Extreme grain refinement by severe plastic deformation: A wealth of challenging science,” Acta Materialia, vol. 61, no. 3, pp. 782–817, 2013, DOI: 10.1016/j.actamaT.2012.10.038. [CrossRef] [Google Scholar]
  16. J. Zhang et al., “In-situ heat treatment (IHt) wire arc additive manufacturing of Inconel625-HSLA steel functionally graded material,” Materials Letters, vol. 330, no. 9, p. 133326, 2023, DOI: 10.1016/j.matleT.2022.133326. [CrossRef] [Google Scholar]
  17. J. Lu and W. Li, “Improvement of tensile properties of laser directed energy deposited IN718/316L functionally graded material via different heat treatments,” Materials Science and Engineering: A, vol. 866, p. 144694, 2023, DOI: 10.1016/j.msea.2023.144694. [CrossRef] [Google Scholar]
  18. A. Sharma, V. Bandari, K. Ito, K. Kohama, and H.S.B.V., “A new process for design and manufacture of tailor-made functionally graded composites through friction stir additive manufacturing,” Journal of Manufacturing Processes, vol. 26, no. 1, pp. 122–130, 2017, DOI: 10.1016/j.jmapro.2017.02.007. [Google Scholar]
  19. M. Tayyebi and M. Alizadeh, “A novel two-step method for producing Al/Cu functionally graded metal matrix composite,” Journal of Alloys and Compounds, vol. 911, no. 2, p. 165078, 2022, DOI: 10.1016/j.jallcom.2022.165078. [Google Scholar]
  20. A. Mallick, S. Gangi Setti, and R.K. Sahu, “Centrifugally cast functionally graded materials: Fabrication and challenges for probable automotive cylinder liner application,” Ceramics International, vol. 49, no. 6, pp. 8649–8682, 2023, DOI: 10.1016/j.ceraminT.2022.12.148. [CrossRef] [Google Scholar]
  21. F. Wang, J. Mei, and X. Wu, “Compositionally graded ti6Al4V + tiC made by direct laser fabrication using powder and wire,” Materials & Design, vol. 28, no. 7, pp. 2040–2046, 2007, DOI: 10.1016/j.matdes.2006.06.010. [CrossRef] [Google Scholar]
  22. Y. Xu, G. Huang, T. Li, Y. Tan, and T. Bao, “Compressive properties of ti6Al4V Functionally Graded Lattice Structures via topology optimization design and selective laser melting fabrication,” Materials Science and Engineering: A, vol. 860, no. 21, p. 144265, 2022, DOI: 10.1016/j.msea.2022.144265. [CrossRef] [Google Scholar]
  23. A. Baroutaji, A. Arjunan, M. Stanford, J. Robinson, and A.G. Olabi, “Deformation and energy absorption of additively manufactured functionally graded thickness thin-walled circular tubes under lateral crushing,” Engineering Structures, vol. 226, p. 111324, 2021, DOI: 10.1016/j.engstrucT.2020.111324. [Google Scholar]
  24. G. Borand and D. Uzunsoy, “Fabrication of functionally graded few-layered graphene reinforced Al-4.5Cu alloy by powder metallurgy,” Journal of Alloys and Compounds, vol. 923, p. 166348, 2022, DOI: 10.1016/j.jallcom.2022.166348. [Google Scholar]
  25. E. Shirjang and M.R. Akbarpour, “Influence of severe plastic deformation of Cu powder and space holder content on microstructure, thermal and mechanical properties of copper foams fabricated by lost carbonate sintering method,” Journal of Materials Research and technology, vol. 26, no. 8, pp. 5437–5449, 2023, DOI: 10.1016/j.jmrT.2023.08.196. [Google Scholar]
  26. G.H. Majzoobi, K. Rahmani, M. Mohammadi, H. Bakhtiari, and R. Das, “Tribological behaviour of ti/HA and ti/SiO2 functionally graded materials fabricated at different strain rates,” Biotribology, 35-36, no. 4, p. 100233, 2023, DOI: 10.1016/j.biotri.2022.100233. [Google Scholar]
  27. M. Mohammadi, M. Rajabi, and M. Ghadiri, “Functionally graded materials (FGMs): A review of classifications, fabrication methods and their applications,” PAC, vol. 15, no. 4, pp. 319–343, 2021, DOI: 10.2298/PAC2104319M. [Google Scholar]
  28. Y. Watanabe, Y. Iwasa, H. Sato, A. Teramoto, K. Abe, and E. Miura-Fujiwara, “Microstructures and mechanical properties of titanium/biodegradable-polymer FGM for bone tissue fabricated by spark plasma sintering method,” Journal of Materials Processing technology, vol. 211, no. 12, pp. 1919–1926, 2011, DOI: 10.1016/j.jmatprotec.2011.05.024. [Google Scholar]
  29. S.S. Ahankari and K.K. Kar, “Functionally Graded Composites: Processing and Applications,” in Composite Materials, K.K. Kar, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 119–168. [Google Scholar]
  30. I.M. El-Galy, B.I. Saleh, and M.H. Ahmed, “Functionally graded materials classifications and development trends from industrial point of view,” SN Appl. Sci., vol. 1, no. 11, p. 39, 2019, DOI: 10.1007/s42452-019-1413-4. [Google Scholar]
  31. X. Yu et al., “Effect of composition gradient design on microstructure and mechanical properties of dual-wire plasma arc additively manufactured 316L/IN625 functionally graded materials,” Materials Chemistry and Physics, vol. 307, p. 128121, 2023, DOI: 10.1016/j.matchemphys.2023.128121. [CrossRef] [Google Scholar]
  32. R. Madan and S. Bhowmick, “Fabrication, microstructural characterization and finite element analysis of functionally graded Al-Al2O3 disk using powder metallurgy technique,” Materials today Communications, vol. 32, no. 3, p. 103878, 2022, DOI: 10.1016/j.mtcomm.2022.103878. [Google Scholar]
  33. H. Ardıçoğlu, H. Karakoç, and H. Çinici, “Microstructural properties and impact behavior of AA5083/Al2O3 functionally graded composite material with surface foam layer produced through powder metallurgy,” Materials today Communications, vol. 35, p. 106144, 2023, DOI: 10.1016/j.mtcomm.2023.106144. [Google Scholar]
  34. R.Z. Valiev and T.G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Progress in Materials Science, vol. 51, no. 7, pp. 881–981, 2006, DOI: 10.1016/j.pmatsci.2006.02.003. [Google Scholar]
  35. Y. Wang et al., “Microstructure and nanoindentation properties of high-throughput prepared ti-Al2O3 functionally graded materials films,” Materials Letters, vol. 337, p. 133966, 2023, DOI: 10.1016/j.matleT.2023.133966. [CrossRef] [Google Scholar]
  36. V.M. Segal, “Equal channel angular extrusion: from macromechanics to structure formation,” Materials Science and Engineering: A, vol. 271, 1-2, pp. 322–333, 1999, DOI: 10.1016/S0921-5093(99)00248-8. [CrossRef] [Google Scholar]
  37. A.P. Zhilyaev and T.G. Langdon, “Using high-pressure torsion for metal processing: Fundamentals and applications,” Progress in Materials Science, vol. 53, no. 6, pp. 893–979, 2008, DOI: 10.1016/j.pmatsci.2008.03.002. [CrossRef] [Google Scholar]
  38. A. Azushima et al., “Severe plastic deformation (SPD) processes for metals,” CIRP Annals, vol. 57, no. 2, pp. 716–735, 2008, DOI: 10.1016/j.cirp.2008.09.005. [Google Scholar]
  39. S. Amelinckx and J. van Landuyt, “Transmission Electron Microscopy,” in Encyclopedia of Physical Science and technology: Elsevier, 2003, pp. 53–87. [Google Scholar]
  40. T. Sun, Y. Li, Y. Liu, B. Deng, C. Liao, and Y. Zhu, “Advanced scanning electron microscopy and microanalysis: Applications to nanomaterials,” in Encyclopedia of Nanomaterials: Elsevier, 2023, pp. 183–209. [Google Scholar]
  41. Z. Baosheng, Z. Jingchuan, Z. Yongjun, Y. Zhongda, C. Hongsheng, and A. Geyin, “Mechanical Properties and Microstructure of in-situ tiCp Reinforced Aluminum Base FGM by Centrifugal Cast,” in Functionally Graded Materials 1996: Elsevier, 1997, pp. 179–184. [Google Scholar]
  42. A.A. Ferreira, A.R. Reis, J. Cruz, and M. Vieira, “Effects of Processing Parameters on Functionally Graded Materials for Industrial Components Repair,” MCMS, vol. 4, no. 2, 2021, DOI: 10.33552/MCMS.2021.04.000585. [Google Scholar]
  43. S. Mao, D.Z. Zhang, Z. Ren, G. Fu, and X. Ma, “Effects of process parameters on interfacial characterization and mechanical properties of 316L/CuCrZr functionally graded material by selective laser melting,” Journal of Alloys and Compounds, vol. 899, p. 163256, 2022, DOI: 10.1016/j.jallcom.2021.163256. [Google Scholar]
  44. A. Pasha and R.B.M, “Functionally graded materials (FGM) fabrication and its potential challenges & applications,” Materials today: Proceedings, vol. 52, pp. 413–418, 2022, DOI: 10.1016/j.matpr.2021.09.077. [Google Scholar]
  45. M. Sam, R. Jojith, and N. Radhika, “Progression in manufacturing of functionally graded materials and impact of thermal treatment—A critical review,” Journal of Manufacturing Processes, vol. 68, no. 6, pp. 1339–1377, 2021, DOI: 10.1016/j.jmapro.2021.06.062. [CrossRef] [Google Scholar]
  46. C. Obara et al., “Effects of forming parameters on metal flow behaviour during the MDF process: taguchi and response surface methodology optimization,” Advances in Materials and Processing technologies, vol. 8, sup3, pp. 1328–1345, 2022, DOI: 10.1080/2374068X.2021.1945313. [CrossRef] [Google Scholar]
  47. R.G. Ford, Y. Miyamoto, W.A. Kaysser, B.H. Rabin, A. Kawasaki, and R.G. Ford, Functionally Graded Materials. Boston, MA: Springer US, 1999. [Google Scholar]
  48. J. Li, H. Liang, Y. Chen, and B. Du, “Promising functionally graded materials for compact gaseous insulated switchgear/pipelines,” High Voltage, vol. 5, no. 3, pp. 231–240, 2020, DOI: 10.1049/hve.2019.0327. [Google Scholar]
  49. M.H. Maih, D.S. Chand, and G.S. Malhi, Optimization of Energy Consumption Model of Laser Cladding technology for Green Additive Manufacturing, 2022. [Google Scholar]
  50. J.J. Richardson, J. Cui, M. Björnmalm, J.A. Braunger, H. Ejima, and F. Caruso, “Innovation in Layer-by-Layer Assembly,” Chemical reviews, vol. 116, no. 23, pp. 14828–14867, 2016, DOI: 10.1021/acs.chemrev.6b00627. [CrossRef] [PubMed] [Google Scholar]
  51. M. Hamamcı, F. Nair, and A.A. Cerit, “Microstructural and mechanical characterization of functionally graded Fe/Fe2B (Fe/B4C) materials fabricated by in-situ powder metallurgy method,” Ceramics International, vol. 49, no. 11, pp. 18786–18799, 2023, DOI: 10.1016/j.ceraminT.2023.02.259. [CrossRef] [Google Scholar]
  52. Ö. Canpolat, A. Çanakçı, and F. Erdemir, “SS316L/Al2O3 functionally graded material for potential biomedical applications,” Materials Chemistry and Physics, vol. 293, p. 126958, 2023, DOI: 10.1016/j.matchemphys.2022.126958. [CrossRef] [Google Scholar]
  53. E. Zhang, J. Zhang, B. Chen, C. Liu, and Y. Zhan, “Finite element analysis of laser ultrasonic in functionally graded material,” Applied Acoustics, vol. 204, no. 12, p. 109243, 2023, DOI: 10.1016/j.apacousT.2023.109243. [CrossRef] [Google Scholar]
  54. D. Dev Singh, S. Arjula, and A. Raji Reddy, “Functionally Graded Materials Manufactured by Direct Energy Deposition: A review,” Materials today: Proceedings, vol. 47, no. 10, pp. 2450–2456, 2021, DOI: 10.1016/j.matpr.2021.04.536. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.