Open Access
Issue
E3S Web Conf.
Volume 505, 2024
3rd International Conference on Applied Research and Engineering (ICARAE2023)
Article Number 02004
Number of page(s) 11
Section Renewable Energy
DOI https://doi.org/10.1051/e3sconf/202450502004
Published online 25 March 2024
  1. Mohammad, A., & Mahjabeen, F. (2023). Revolutionizing Solar Energy with AI-Driven Enhancements in Photovoltaic technology. BULLEt: Jurnal Multidisiplin Ilmu, 2(4), 1174–1187. [Google Scholar]
  2. Li, F., Miao, G., Hou, Z., Xu, L., Zhu, X., Miao, X., & Li, X. (2023). Tree-Inspired Aerogel with a Radial and Centrosymmetric Structure for Efficient Solar-Powered Water Purification. ACS Applied Materials & Interfaces. [Google Scholar]
  3. Balguri, P.K., Samuel, D.H., & Thumu, U. (2021). A review on mechanical properties of epoxy nanocomposites. Materials today: Proceedings, 44, 346–355. [Google Scholar]
  4. Gupta, T.K., Budarapu, P.R., Chappidi, S.R., Yb, S.S., Paggi, M., & Bordas, S.P. (2019). Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 26(38), 6851–6877. [CrossRef] [PubMed] [Google Scholar]
  5. Arun, V., Singh, A.K., Shukla, N.K., & Tripathi, D.K. (2016). Design and performance analysis of SOA-MZI based reversible toffoli and irreversible AND logic gates in a single photonic circuiT. Optical and quantum electronics, 48, 1–15. [CrossRef] [Google Scholar]
  6. Arora, G.S., & Saxena, K.K. (2023). A review study on the influence of hybridization on mechanical behaviour of hybrid Mg matrix composites through powder metallurgy. Materials today: Proceedings. [Google Scholar]
  7. Wei, D., Wang, C., Zhang, J., Zhao, H., Asakura, Y., Eguchi, M., & Yamauchi, Y. (2023). Water Activation in Solar‐Powered Vapor Generation. Advanced Materials, 2212100. [CrossRef] [Google Scholar]
  8. Sun, M.H., Li, C., Liu, J., Min, P., Yu, Z.Z., & Li, X. (2023). Three-Dimensional Mirror-Assisted and Concave Pyramid-Shaped Solar-thermal Steam Generator for Highly Efficient and Stable Water Evaporation and Brine Desalination. ACS Applied Materials & Interfaces. [Google Scholar]
  9. Korpi, A.G., Tălu, Ş., Bramowicz, M., Arman, A., Kulesza, S., Pszczolkowski, B., & Gopikishan, S. (2019). Minkowski functional characterization and fractal analysis of surfaces of titanium nitride films. Materials Research Express, 6(8), 086463. [Google Scholar]
  10. Tripathi, G.P., Agarwal, S., Awasthi, A., & Arun, V. (2022, August). Artificial Hip Prostheses Design and Its Evaluation by Using Ansys Under Static Loading Condition. In Biennial International Conference on Future Learning Aspects of Mechanical Engineering (pp. 815–828). Singapore: Springer Nature Singapore. [Google Scholar]
  11. Telagam, N., Kandasamy, N., & Nanjundan, M. (2017). Smart sensor network based high quality air pollution monitoring system using labview. International Journal of Online Engineering (iJOE), 13(08), 79–87. [CrossRef] [Google Scholar]
  12. Saxena, K.K., & Lal, A. (2012). Comparative Molecular Dynamics simulation study of mechanical properties of carbon nanotubes with number of stone-wales and vacancy defects. Procedia Engineering, 38, 2347–2355. [CrossRef] [Google Scholar]
  13. Zeina, A., & Almaz, A. (2023). The use of architectural treatments for optimal utilization of solar. [Google Scholar]
  14. Viale, A., Çelik, O., Oderinwale, T., Sulbhewar, L., & McInnes, C.R. (2023). A reference architecture for orbiting solar reflectors to enhance terrestrial solar power plant outpuT. Advances in Space Research. [Google Scholar]
  15. Ramadugu, S., Ledella, S.R.K., Gaduturi, J.N.J., Pinninti, R.R., Sriram, V., & Saxena, K.K. (2023). Environmental life cycle assessment of an automobile component fabricated by additive and conventional manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–12. [Google Scholar]
  16. Ajith, J.B., Manimegalai, R., & Ilayaraja, V. (2020, February). An Iot based smart water quality monitoring system using cloud. In 2020 International conference on emerging trends in information technology and engineering (ic-EtItE) (pp. 1–7). IEEE. [Google Scholar]
  17. Liu, B.J., Chen, Q., Mo, Q.L., & Xiao, F.X. (2023). Robust, versatile, green and emerging Layer-by-Layer Self-Assembly platform for solar energy conversion. Coordination Chemistry Reviews, 493, 215285. [Google Scholar]
  18. Dada, M., & Popoola, P. (2023). Recent advances in solar photovoltaic materials and systems for energy storage applications: a review. Beni-Suef University Journal of Basic and Applied Sciences, 12(1), 66. [CrossRef] [Google Scholar]
  19. Nazim, M., & Ahmad, R. (2023). Introduction to advanced electronic materials for clean energy applications. In Advances in Electronic Materials for Clean Energy Conversion and Storage Applications (pp. 3–26). Woodhead Publishing. [CrossRef] [Google Scholar]
  20. Dwivedi, A., Shukla, S.K., Bharti, P.K., Gupta, N., Saxena, K.K., & Dwivedi, Y.D. (2023). Comparative study of polyanthranilic acid and sulphonated polyaniline on the mild steel corrosion in aqueous hydrochloric acid. Canadian Metallurgical Quarterly, 1–9. [CrossRef] [Google Scholar]
  21. SudhirSastry, Y.B., Krishna, Y., & Budarapu, P.R. (2015). Parametric studies on buckling of thin walled channel beams. Computational Materials Science, 96, 416–424. [Google Scholar]
  22. Yang, G., Yang, W., Gu, H., Fu, Y., Wang, B., Cai, H., & Huang, W. (2023). Perovskite Solar Cell Powered Integrated Fuel Conversion and Energy Storage Devices. Advanced Materials, 2300383. [CrossRef] [Google Scholar]
  23. Saxena, K.K., Srivastava, V., & Sharma, K. (2012). Calculation of Fundamental Mechanical Properties of Single Walled Carbon Nanotube using Non-local Elasticity. Advanced Materials Research, 383, 3840–3844. [Google Scholar]
  24. Harun-Ur-Rashid, M., & Imran, A.B. (2023). Engineered Nanomaterials for Energy Conversion Cells. Materials Research Foundations, 148. [Google Scholar]
  25. Arun, V., Shukla, N.K., Singh, A.K., & Upadhyay, K.K. (2015, September). Design of all optical line selector based on SOA for data communication. In Proceedings of the Sixth International Conference on Computer and Communication technology 2015 (pp. 281–285). [Google Scholar]
  26. Awasthi, A., Saxena, K.K., Dwivedi, R.K., Buddhi, D., & Mohammed, K.A. (2022). Design and analysis of ECAP Processing for Al6061 Alloy: a microstructure and mechanical property study. International Journal on Interactive Design and Manufacturing (IJIDeM), 1–13. [Google Scholar]
  27. Reddy, K.S.P., Roopa, Y.M., Ln, K.R., & Nandan, N.S. (2020, July). Iot based smart agriculture using machine learning. In 2020 Second international conference on inventive research in computing applications (ICIRCA) (pp. 130–134). IEEE. [Google Scholar]
  28. Khare, V., Chaturvedi, P., & Mishra, M. (2023). Solar Energy System Concept Change from trending technology: A Comprehensive Review. E-Prime-Advances in Electrical Engineering, Electronics and Energy, 100183. [Google Scholar]
  29. Solak, E.K., & Irmak, E. (2023). Advances in organic photovoltaic cells: a comprehensive review of materials, technologies, and performance. RSC advances, 13(18), 12244–12269. [Google Scholar]
  30. Awasthi, A., Saxena, K.K., & Arun, V. (2020). Sustainability and survivability in manufacturing sector. In Modern Manufacturing Processes (pp. 205–219). Woodhead Publishing. [Google Scholar]
  31. Kumari, C.U., Murthy, A.S.D., Prasanna, B.L., Reddy, M.P.P., & Panigrahy, A.K. (2021). An automated detection of heart arrhythmias using machine learning technique: SVM. Materials today: Proceedings, 45, 1393–1398. [Google Scholar]
  32. Bo, L. (2023). Nonlinear Dynamic Behaviour of Solar Cells with Advanced Materials (Doctoral dissertation, UNSW Sydney). [Google Scholar]
  33. Camaioni, N., Carbonera, C., Ciammaruchi, L., Corso, G., Mwaura, J., Po, R., & Tinti, F. (2023). Polymer Solar Cells with Active Layer thickness Compatible with Scalable Fabrication Processes: A Meta‐Analysis. Advanced Materials, 35(8), 2210146. [CrossRef] [Google Scholar]
  34. Dixit, A., Saxena, A., Sharma, R., Behera, D., & Mukherjee, S. (2023). Solar Photovoltaic Principles. In Solar PV Panels-Recent Advances and Future Prospects. IntechOpen. [Google Scholar]
  35. Shukla, A., Gupta, N., Ramya, N.S., Saxena, K.K., Iqbal, A., & Djavanroodi, F. (2023). Environmental sustainability in construction: Influence of Megaterium Bacteria on the durability and mechanical properties of concrete incorporating calcined clay. Mechanics of Advanced Materials and Structures, 1–13. [Google Scholar]
  36. Godavarthi, B., Nalajala, P., & Ganapuram, V. (2017, August). Design and implementation of vehicle navigation system in urban environments using internet of things (Iot). In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012262). IOP Publishing. [CrossRef] [Google Scholar]
  37. Trinh, V.L., & Chung, C.K. (2023). Renewable energy for SDG-7 and sustainable electrical production, integration, industrial application, and globalization. Cleaner Engineering and technology, 15, 100657. [Google Scholar]
  38. Zhang, L., Yuan, J., & Kim, C.S. (2023). Application of energy-saving building’s designing methods in marine cities. Energy Reports, 9, 98–110. [Google Scholar]
  39. Basavapoornima, C., Kesavulu, C.R., Maheswari, T., Pecharapa, W., Depuru, S.R., & Jayasankar, C.K. (2020). Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. Journal of Luminescence, 228, 117585. [CrossRef] [Google Scholar]
  40. Awasthi, A., Saxena, K.K., & Arun, V. (2021). Sustainable and smart metal forming manufacturing process. Materials today: Proceedings, 44, 2069–2079. [Google Scholar]
  41. Sun, J., Li, B., Hu, L., Guo, J., Ling, X., Zhang, X., & Ma, W. (2023). Hybrid Block Copolymer/Perovskite Heterointerfaces for Efficient Solar Cells. Advanced Materials, 35(1), 2206047. [CrossRef] [Google Scholar]
  42. Yao, Z., Lum, Y., Johnston, A., Mejia-Mendoza, L.M., Zhou, X., Wen, Y., & Seh, Z.W. (2023). Machine learning for a sustainable energy future. Nature Reviews Materials, 8(3), 202–215. [Google Scholar]
  43. Zaidi, N.H. (2023). Quantum dots nanotechnology for sustainable solar energy device. In Advances in Electronic Materials for Clean Energy Conversion and Storage Applications (pp. 61–80). Woodhead Publishing. [CrossRef] [Google Scholar]
  44. Singh, P., Raghavender, V., Joshi, S., Vasant, N.P., Awasthi, A., Nagpal, A., & Jasim Abd al-saheb, A. (2023). Composite material: A review over current development and automotive application. Materials today: Proceedings. [Google Scholar]
  45. Kanwal, T., Rehman, S.U., Ali, T., Mahmood, K., Villar, S.G., Lopez, L.A.D., & Ashraf, I. (2023). An intelligent dual-axis solar tracking system for remote weather monitoring in the agricultural field. Agriculture, 13(8), 1600. [CrossRef] [Google Scholar]
  46. Jafri, N., Tahir, M., & Ahad, A. (2023). The role of artificial intelligence in solar harvesting, storage, and conversion. In Solar Energy Harvesting, Conversion, and Storage (pp. 293–318). Elsevier. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.